Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic enzyme.

J Control Release

Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA; Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08910, Spain. Electronic address:

Published: August 2020

The interaction of drug delivery systems with tissues is key for their application. An example is drug carriers targeted to endothelial barriers, which can be transported to intra-endothelial compartments (lysosomes) or transcellularly released at the tissue side (transcytosis). Although carrier targeting valency influences this process, the mechanism is unknown. We studied this using polymer nanocarriers (NCs) targeted to intercellular adhesion molecule-1 (ICAM-1), an endothelial-surface glycoprotein whose expression is increased in pathologies characterized by inflammation. A bell-shaped relationship was found between NC targeting valency and the rate of transcytosis, where high and low NC valencies rendered less efficient transcytosis rates than an intermediate valency formulation. In contrast, an inverted bell-shape relationship was found for NC valency and lysosomal trafficking rates. Data suggested a model where NC valency plays an opposing role in the two sub-processes involved in transcytosis: NC binding-uptake depended directly on valency and exocytosis-detachment was inversely related to this parameter. This is because the greater the avidity of the NC-receptor interaction the more efficient uptake becomes, but NC-receptor detachment post-transport is more compromised. Cleavage of the receptor at the basolateral side of endothelial cells facilitated NC transcytosis, likely by helping NC detachment post-transport. Since transcytosis encompasses both sets of events, the full process finds an optimum at the intersection of these inverted relationships, explaining the bell-shaped behavior. NCs also trafficked to lysosomes from the apical side and, additionally, from the basolateral side in the case of high valency NCs which are slower at detaching from the receptor. This explains the opposite behavior of NC valency for transcytosis vs. lysosomal transport. Anti-ICAM NCs were verified to traffic into the brain after intravenous injection in mice, and both cellular and in vivo data showed that intermediate valency NCs resulted in higher delivery of a therapeutic enzyme, acid sphingomyelinase, required for types A and B Niemann-Pick disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720842PMC
http://dx.doi.org/10.1016/j.jconrel.2020.05.009DOI Listing

Publication Analysis

Top Keywords

valency
9
transport anti-icam
8
delivery therapeutic
8
therapeutic enzyme
8
targeting valency
8
intermediate valency
8
detachment post-transport
8
basolateral side
8
valency ncs
8
transcytosis
7

Similar Publications

Colour is an integral part of natural and constructed environments. For many, it also has an aesthetic appeal, with some colours being more pleasant than others. Moreover, humans seem to systematically and reliably associate colours with emotions, such as yellow with joy, black with sadness, light colours with positive and dark colours with negative emotions.

View Article and Find Full Text PDF

Monolayer atomic thin films of group-V elements have a high potential for application in spintronics and valleytronics because of their unique crystal structure and strong spin-orbit coupling. We fabricated Sb and Bi monolayers on a SiC(0001) substrate by the molecular-beam-epitaxy method and studied the electronic structure by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. The fabricated Sb film shows the (√3×√3)R30º superstructure associated with the formation of ⍺-Sb, and exhibits a semiconducting nature with a band gap of more than 1.

View Article and Find Full Text PDF

Data-Driven Improvement of Local Hybrid Functionals: Neural-Network-Based Local Mixing Functions and Power-Series Correlation Functionals.

J Chem Theory Comput

January 2025

Technische Universitát Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany.

Local hybrid functionals (LHs) use a real-space position-dependent admixture of exact exchange (EXX), governed by a local mixing function (LMF). The systematic construction of LMFs has been hampered over the years by a lack of exact physical constraints on their valence behavior. Here, we exploit a data-driven approach and train a new type of "n-LMF" as a relatively shallow neural network.

View Article and Find Full Text PDF

Avoiding positivity at a cost: Evidence of reward devaluation in the novel valence selection task.

J Exp Psychol Gen

January 2025

Department of Educational Psychology, College of Education and Human Development, University of Minnesota, Twin Cities.

Reward devaluation theory (RDT) posits that some depressed individuals may not only be biased toward negative material but also actively avoid positive material (i.e., devaluing reward).

View Article and Find Full Text PDF

NiMnZ (Z = In, Sn or Sb) undergo martensitic transformation with transformation temperature () scaling with the average valence electron per atom (/) ratio. However, the rate of increase of depends on the type of Z atom, with the slope of / curve increasing from Z = In to Z = Sb. Local structural distortions are believed to be the leading cause of martensitic transformation in these alloys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!