In situ forming implants (ISFIs) allow for a high initial intratumoral concentration and sustained release of the chemotherapeutic. However, clinical translation is impeded primarily due to limited drug penetration from the tumor/boundary interface and poor intratumoral drug retention. Therapeutic ultrasound (TUS) has become a popular approach for improving drug penetration of transdermal devices and increasing cellular uptake of nanoparticles. These effects are driven by the mechanical and thermal bioeffects associated with TUS. In this study, we characterize the released drug penetration, retention, and overall therapeutic response when exposing ISFI to the combination of the mechanical and thermal effects of TUS (C-TUS). ISFIs were intratumorally injected into subcutaneous murine tumors then exposed to C-TUS (exposure: 5 min, duty factor: 0.33, frequency: 3 MHz, intensity: 2.2 W/cm, pulse duration: 2 ms, pulse repetition frequency: 165 Hz, effective radiating area: 5 cm, energy delivered: 896 J, time average intensity: 0.88 W/cm). Tumors treated with the combination of ISFI + C-TUS demonstrated a 2.5-fold increase in maximum drug penetration and a 3-fold increase in drug retention at 5- and 8-days post-injection, respectively, compared to ISFIs without TUS exposure. These improvements in drug penetration and retention translated into an enhanced therapeutic response. Mice treated with ISFI + C-TUS showed a 62.6% reduction in tumor progression, a 50.0% increase in median survival time, and a 26.6% increase in necrotic percentage compared to ISFIs without TUS exposure. Combining intratumoral ISFIs with TUS may be beneficial for addressing some long-standing challenges with local drug delivery in cancer treatment and may serve as a viable noninvasive method to improve the poor clinical success of local drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725358 | PMC |
http://dx.doi.org/10.1016/j.jconrel.2020.05.003 | DOI Listing |
Adv Healthc Mater
January 2025
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
This research focuses on developing and characterizing islatravir-loaded dissolving microarray patches (MAPs) to provide an effective, minimally invasive treatment option for human immunodeficiency virus (HIV-1) prevention and treatment. The research involves manufacturing these MAPs using a double-casting approach, and conducting in vitro and in vivo evaluations. Results show that the MAPs have excellent needle fidelity, structural integrity, and mechanical strength.
View Article and Find Full Text PDFFront Artif Intell
January 2025
Department of Genetic Engineering, Computational Biology Lab, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Chennai, India.
Cell-penetrating peptides (CPPs) are highly effective at passing through eukaryotic membranes with various cargo molecules, like drugs, proteins, nucleic acids, and nanoparticles, without causing significant harm. Creating drug delivery systems with CPP is associated with cancer, genetic disorders, and diabetes due to their unique chemical properties. Wet lab experiments in drug discovery methodologies are time-consuming and expensive.
View Article and Find Full Text PDFJ Biol Methods
October 2024
Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece.
Background: Nanotechnology has emerged as a promising field for the diagnosis, monitoring, and treatment of respiratory tract infections (RTIs). By leveraging the unique properties of nanoscale delivery systems, nanotechnology can significantly enhance the selectivity and efficacy of antimicrobials, thereby reducing off-target effects.
Objective: This review explores the development and application of targeted nanosystems in combating viral, bacterial, and fungal RTIs.
Adv Mater
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
Depression is a common psychiatric disorder, and monoamine-based antidepressants as first-line therapy remain ineffective in some patients. The synergistic modulation of neuroinflammation and neuroplasticity could be a major strategy for treating depression. In this study, an inflammation-targeted microglial biomimetic system, PDA-Mem@M, is reported for treating depression.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Intracellular monitoring of protein ubiquitination and differentiating polyubiquitin chain topology are crucial for understanding life processes and drug discovery, which is challenged by the high complexity of the ubiquitination process and a lack of molecular tools. Herein, a synthetic dual-sensor platform specific for K48-linked ubiquitin oligomers was tailored for visualization of polyubiquitin chain assembling in live biosystems. This is achieved using macrocyclic peptides as recognition motifs and a tetraphenylethylene derivative as an activatable reporter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!