Appropriate dosing of antibiotics is key in the treatment of bacterial infections to ensure clinical efficacy while avoiding toxic drug concentrations and minimizing emergence of resistance. As collection of sufficient clinical evidence is difficult for specific patient populations, infection types and pathogens, market authorization, dosing strategies and recommendations often rely on data obtained from in vitro and animal experiments. The aim of this review is to provide an overview of commonly used preclinical infection models, including their strengths and limitations. In vitro, static and dynamic time-kill experiments are the most frequently used methods for assessing pharmacokinetic/pharmacodynamic (PK/PD) associations. Limitations of in vitro models include the inability to account for the effects of the immune system, and uncertainties in clinically relevant bacterial concentrations, growth conditions and the implications of emerging resistant bacterial populations during experiments. Animal experiments, most commonly murine lung and thigh infections models, are considered a necessary link between in vitro data and the clinical situation. However, there are differences in pathophysiology, immunology, and PK between species. Mathematical modeling in which preclinical data are integrated with human population PK can facilitate translation of preclinical data to the patient's clinical situation. Moreover, PK/PD modeling and simulations can help in the design of clinical trials aiming to establish optimal dosing regimens to improve patient outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijantimicag.2020.106008 | DOI Listing |
J Immunother Cancer
January 2025
Division of Infection, Immunity and Respiratory Medicine, The University of Manchester, Manchester, UK
Background: Programmed cell death 1 (PD-1) signaling blockade by immune checkpoint inhibitors (ICI) effectively restores immune surveillance to treat melanoma. However, chronic interferon-gamma (IFNγ)-induced immune homeostatic responses in melanoma cells contribute to immune evasion and acquired resistance to ICI. Poly ADP ribosyl polymerase 14 (PARP14), an IFNγ-responsive gene product, partially mediates IFNγ-driven resistance.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.
Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Center for Preclinical Surgical & Interventional Research, The Texas Heart Institute, Houston, TX 77030, USA.
The evolution of left ventricular assist devices (LVADs) from large, pulsatile systems to compact, continuous-flow pumps has significantly improved implantation outcomes and patient mobility. Minimally invasive surgical techniques have emerged that offer reduced morbidity and enhanced recovery for LVAD recipients. Innovations in wireless power transfer technologies aim to mitigate driveline-related complications, enhancing patient safety and quality of life.
View Article and Find Full Text PDFPept Sci (Hoboken)
November 2024
Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, United States of America.
The COVID-19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small-molecule based antiviral agents against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The interaction between the SARS-CoV2 spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well described protein-protein interaction (PPI). This PPI is mediated by an α-helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry.
View Article and Find Full Text PDFPancreatology
January 2025
Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Veterans Affairs Medical Center, Birmingham, AL, USA. Electronic address:
Background: Acute Pancreatitis (AP) is a formidable disease with significant morbidity, mortality and healthcare expenditure. There is an emergent need to develop therapeutic agents for this disease as there are no targeted therapies available. We have recently demonstrated that pirfenidone can significantly decrease the severity of AP in animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!