Continuous stationary phase gradients for liquid chromatography (LC) have been recently shown to be a promising method of altering selectivity. In this work, we present the first multicomponent continuous stationary phase gradient for separations involving both reversed-phase (RP) and strong cation exchange (SCX) mechanisms. These columns are fabricated using a two-step methodology based on controlled rate infusion (CRI). First, destructive CRI creates a gradient of excess silanol groups along a uniform C column. Next, these columns are infused with 3-mercaptopropyltrimethoxysilane (MPTMOS), which bonds to the excess silanol groups. The terminal thiols of the MPTMOS ligands are oxidized with HO to create the sulfonate functionality (SO) needed for SCX separations. The success of the modification procedure is characterized by thermogravimetric analysis and X-ray photoelectron spectroscopy. The stability of the C-SO gradients were found to have less than 5 % retention loss and the column-to-column reproducibility had a relative standard deviation under 9 %. The peak asymmetry factors for seven biogenic amines were found to be between 1.03 ± 0.04 to 1.30 ± 0.02, which illustrates minimal peak tailing due to poor packing and residual silanol groups. Characterization of the gradient columns using an isocratic mobile phase showed a unique elution order compared to a uniform C and SO columns. At lower counterion concentrations, more than 48 % of the overall retention on the gradient stationary phase is due to a SCX mechanism. Meanwhile, the RP mechanism was shown to predominate at higher counterion concentrations on the gradient columns (SCX retention contribution less than 40 %). Coupling the stationary phase gradient to a salt gradient in the mobile phase showed that the gradient phase provides a unique, intermediate selectivity to the uniform C and SO columns. Under an ACN mobile phase gradient, a significant increase (p < 0.003) in the retention times of three biogenic amines (15 - 16 %) was observed when the multicomponent gradient was oriented to have a high SO ligand density near the detector. This work serves as a proof-of-concept design for a multicomponent stationary phase gradient to continue fundamental studies into retention and encourage novel applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2020.461177 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!