Spiralian Genomes Reveal Gene Family Expansions Associated with Adaptation to Freshwater.

J Mol Evol

School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA.

Published: July 2020

The colonization of freshwater habitats by marine-adapted organisms represents a major transition that has only occurred a few times in the evolution of animals. Only around half of the extant animal phyla have representatives in both marine and freshwater environments and even within those phyla some major clades are restricted to marine environments. Moving from marine to freshwater environments can create severe osmotic and ionic stresses and the mechanisms that animals have used to adapt to those stresses are still not well understood. In this study, we downloaded amino acid sequence data from 11 spiralian animal genomes (four freshwater taxa representing four different phyla as well as 7 marine taxa) and identified a number of gene family expansions that have occurred exclusively in the freshwater lineages. Further investigation of these gene families and the timing and nature of their expansions will illuminate one of the major evolutionary transitions in the history of life on Earth.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-020-09949-xDOI Listing

Publication Analysis

Top Keywords

gene family
8
family expansions
8
marine freshwater
8
freshwater environments
8
freshwater
6
spiralian genomes
4
genomes reveal
4
reveal gene
4
expansions associated
4
associated adaptation
4

Similar Publications

sp. nov. and sp. nov., two bacteria isolated from marine sediment in the East China Sea.

Int J Syst Evol Microbiol

January 2025

Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315800, PR China.

Two Gram-stain-negative, curved-rod-shaped, non-motile and aerobic bacteria W6 and I13 were isolated from marine sediment samples collected from Meishan Island located in the East China Sea. Catalase and oxidase activities and hydrolysis of Tween 40, 60 and 80 were positive for both strains, while nitrate reduction, indole production, methyl red reaction and HS production were negative. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains W6 and I13 formed distinct phylogenetic lineages within the genera and , respectively.

View Article and Find Full Text PDF

Genomic profiling at a single center cracks the code in inborn errors of immunity.

Intern Emerg Med

January 2025

Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.

Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.

View Article and Find Full Text PDF

A Gram-stain-negative, rod-shaped, non-motile, aerobic, light-yellow-pigmented bacterium, designated as strain Y10, was isolated from Lumnitzera racemosa leaf in Iriomote island mangrove forests in Japan. The 16S rRNA gene sequence analysis revealed that the isolate Y10 was affiliated with the family Flavobacteriaceae, and the sequence showed the highest sequence identity to that of Neptunitalea chrysea NBRC 110019 (97.2%) and others with below 96% sequence identity.

View Article and Find Full Text PDF

An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.

Plant Cell

December 2024

Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.

A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.

View Article and Find Full Text PDF

Bacteria encounter chemically similar nutrients in their environment, which impact their growth in distinct ways. Among such nutrients are cobamides, the structurally diverse family of cofactors related to vitamin B (cobalamin), which function as cofactors for diverse metabolic processes. Given that different environments contain varying abundances of different cobamides, bacteria are likely to encounter cobamides that enable them to grow robustly and also those that do not function efficiently for their metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!