Neurometabolites and sport-related concussion: From acute injury to one year after medical clearance.

Neuroimage Clin

Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, ON, Canada; Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada; Faculty of Medicine (Neurosurgery) University of Toronto, Toronto, ON, Canada; The Institute of Biomaterials & Biomedical Engineering (IBBME) at the University of Toronto, Toronto, ON, Canada.

Published: March 2021

Sport-related concussion is associated with acute disturbances in neurometabolic function, with effects that may last weeks to months after injury. However, is presently unknown whether these disturbances resolve at medical clearance to return to play (RTP) or continue to evolve over longer time intervals. Moreover, little is known about how these neurometabolic changes correlate with other measures of brain physiology. In this study, these gaps were addressed by evaluating ninety-nine (99) university-level athletes, including 33 with sport-related concussion and 66 without recent injury, using multi-parameter magnetic resonance imaging (MRI), which included single-voxel spectroscopy (SVS), diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). The concussed athletes were scanned at the acute phase of injury (27/33 imaged), medical clearance to RTP (25/33 imaged), one month post-RTP (25/33 imaged) and one year post-RTP (13/33 imaged). We measured longitudinal changes in N-acetyl aspartate (NAA) and myo-inositol (Ins), over the course of concussion recovery. Concussed athletes showed no significant abnormalities or longitudinal change in NAA values, whereas Ins was significantly elevated at RTP and one month later. Interestingly, Ins response was attenuated by a prior history of concussion. Subsequent analyses identified significant associations between Ins values, DTI measures of white matter microstructure and fMRI measures of functional connectivity. These associations varied over the course of concussion recovery, suggesting that elevated Ins values at RTP and beyond reflect distinct changes in brain physiology, compared to acute injury. These findings provide novel information about neurometabolic recovery after a sport-related concussion, with evidence of disturbances that persist beyond medical clearance to RTP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215245PMC
http://dx.doi.org/10.1016/j.nicl.2020.102258DOI Listing

Publication Analysis

Top Keywords

sport-related concussion
16
medical clearance
16
acute injury
8
brain physiology
8
concussed athletes
8
clearance rtp
8
25/33 imaged
8
course concussion
8
concussion recovery
8
ins values
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!