Evaluating fidelity of CT based 3D models for Zebrafish conductive hearing system.

Micron

Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, USA. Electronic address:

Published: August 2020

The zebrafish Weberian apparatus is an emerging model for human conductive hearing system. Their Weberian apparatus comprises minute bones and ligamentary links, and conducts sound pressure transmission from the gas bladder to inner ear through four pairs of Weberian ossicles along the vertebral column. We herein present a methodological study using MicroCT to image the Weberian apparatus for biomechanical and morphological analysis. The aim of this work is to evaluate computational models generated from multiple MicroCT scans with different parameters, to identify the most feasible scan combination for practical (minimized scan time) yet accurate (relative to highest resolution) biomechanical simulations. We segmented and created 3D models from CT scan image stacks at 4.64 μm, 5.05 μm, 9.30 μm and 13.08 μm voxel resolutions, respectively. Then, we used geometric morphometrics analysis to quantify inter-model shape differences, as well as a series of finite element modal and harmonic analyses to simulate auditory signal vibrations. Relative to the highest resolution and most accurate model, the Model 9.30 is closest in overall geometry and biomechanical behavior of all lower resolution models. The differences in resolution and quality of the CT substantially affect the segmentation and reconstruction process of the three-dimensional model of the ossicles, and the subsequent analyses. We conclude that scan voxel resolution is a key factor influencing outcomes of biomechanical simulations of delicate and minute structures, especially when studying the harmonic response of minute ossicles connected by ligaments using finite element modeling. Furthermore, contrast variations in CT images as determined by x-ray power and scan speed, also affect fidelity in 3D models and simulation outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2020.102874DOI Listing

Publication Analysis

Top Keywords

weberian apparatus
12
conductive hearing
8
hearing system
8
relative highest
8
highest resolution
8
biomechanical simulations
8
finite element
8
models
5
scan
5
resolution
5

Similar Publications

The Weberian apparatus is a hearing specialization unique to the otophysan fishes, and an unexpected degree of morphological variation exists in species of the Noturus catfishes. Our aim in this study is to investigate relationships between morphological variations and ecology that may drive this variation. Sampling 48 specimens representing 25 species, we investigated morphological diversity and accounted for ecological variables using landmark-based 3D geometric morphometrics and x-ray-based computed tomography (CT) images.

View Article and Find Full Text PDF

The Weberian apparatus is a novel hearing adaptation that facilitates increased hearing sensitivity in otophysan fishes. The apparatus is a complex system composed of modifications to anterior vertebral elements, the inner ear, and the swim bladder. A critical piece of the system that often receives minor attention are the various ligaments that bridge these three regions.

View Article and Find Full Text PDF

Finite element modelling of sound transmission in the Weberian apparatus of zebrafish ().

J R Soc Interface

January 2024

Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

Zebrafish, an essential vertebrate model, has greatly expanded our understanding of hearing. However, one area that remains unexplored is the biomechanics of the Weberian apparatus, crucial for sound conduction and perception. Using micro-computed tomography (μCT) bioimaging, we created three-dimensional finite element models of the zebrafish Weberian ossicles.

View Article and Find Full Text PDF

Detailed histological analyses are desirable for zebrafish mutants that are models for human skeletal diseases, but traditional histological techniques are limited to two-dimensional thin sections with orientations highly dependent on careful sample preparation. On the other hand, techniques that provide three-dimensional (3D) datasets including µCT scanning are typically limited to visualizing the bony skeleton and lack histological resolution. We combined diffusible iodine-based contrast enhancement (DICE) and propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRµCT) to image late larval and juvenile zebrafish, obtaining high-quality 3D virtual histology datasets of the mineralized skeleton and surrounding soft tissues.

View Article and Find Full Text PDF

The four described species of Danionella are tiny, transparent fishes that mature at sizes between 10-15 mm, and represent some of the most extreme cases of vertebrate progenesis known to date. The miniature adult size and larval appearance of Danionella, combined with a diverse behavioral repertoire linked to sound production by males, have established Danionella as an important model for neurophysiological studies. The external similarity between the different species of Danionella has offered an important challenge to taxonomic identification using traditional external characters, leading to confusion over the identity of the model species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!