A motion-in-depth model based on inter-ocular velocity to estimate direction in depth.

Vision Res

Graduate School of Information Science, Tohoku University, Sendai, Japan; Research Institute of Electrical Communication, Tohoku University, Sendai, Japan. Electronic address:

Published: July 2020

Perception of motion in depth is one of the most important visual functions for living in the three-dimensional world. Two binocular cues have been investigated for motion in depth: inter-ocular velocity difference (IOVD) and changing disparity (CD). IOVD provides direction information directly by comparing velocity signals from the two retinas. In this study, we propose for the first time a motion-in-depth model of IOVD that predicts motion-in-depth direction. The model is based on a psychophysical assumption that there are four channels tuned to different directions in depth (Journal of Physiology 235 (1973) 17-29). We modeled these channels by combining outputs of low-level motion detectors that are sensitive to left and right retinal stimulation. Using these channels, we constructed a model of motion in depth that successfully predicted a variety of psychophysical results including direction discrimination, perceived direction, spatial frequency tuning, effect of speed on rotation in depth, effect of lateral motion direction, and effect of binocular and temporal correlations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2020.04.002DOI Listing

Publication Analysis

Top Keywords

motion depth
12
motion-in-depth model
8
model based
8
inter-ocular velocity
8
direction
6
depth
6
motion
5
based inter-ocular
4
velocity estimate
4
estimate direction
4

Similar Publications

An MRI-guided stereotactic neurosurgical robotic system for semi-enclosed head coils.

J Robot Surg

December 2024

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.

Magnetic resonance imaging (MRI) offers high-quality soft tissue imaging without radiation exposure, which allows stereotactic techniques to significantly improve outcomes in cranial surgeries, particularly in deep brain stimulation (DBS) procedures. However, conventional stereotactic neurosurgeries often rely on mechanical stereotactic head frames and preoperative imaging, leading to suboptimal results due to the invisibility and the contact with patient's head, which may cause additional harm. This paper presents a frameless, MRI-guided stereotactic neurosurgical robotic system.

View Article and Find Full Text PDF

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.

View Article and Find Full Text PDF

Purpose: Motion capture technology is quickly evolving providing researchers, clinicians, and coaches with more access to biomechanics data. Markerless motion capture and inertial measurement units (IMUs) are continually developing biomechanics tools that need validation for dynamic movements before widespread use in applied settings. This study evaluated the validity of a markerless motion capture, IMU, and red, green, blue, and depth (RGBD) camera system as compared to marker-based motion capture during countermovement jumps, overhead squats, lunges, and runs with cuts.

View Article and Find Full Text PDF

Wave ripples can provide valuable information on their formative hydrodynamic conditions in past subaqueous environments by inverting dimension predictors. However, these inversions do not usually take the mixed non-cohesive/cohesive nature of sediment beds into account. Recent experiments involving sand-kaolinite mixtures have demonstrated that wave-ripple dimensions and the threshold of motion are affected by bed clay content.

View Article and Find Full Text PDF

Native knee joint infections, while uncommon, present a serious condition predominantly instigated by bacteria such as . Without timely intervention, they can result in joint destruction or sepsis, with risk factors encompassing preexisting medical conditions and iatrogenic procedures. The diagnostic process includes a comprehensive patient history, clinical evaluation, laboratory testing, imaging studies, and microbiological investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!