A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors. | LitMetric

Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors.

J Hazard Mater

Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106-5080, USA. Electronic address:

Published: October 2020

Ionic liquids (ILs) have attracted increasing attention both in the scientific community and the industry in the past two decades. Their risk of being inevitable released to ecosystem lights up the urgent research on their toxicity to the environment. To reduce the time and capital consumption on testing tremendous ILs ecotoxicity experimentally, it is essential to construct predictive models for estimating their toxicity. The objective of this study is to provide a new approach for evaluating the ecotoxicity of ILs. A comprehensive ecotoxicity dataset for Vibrio fischeri involving 142 ILs, was collected and investigated. The electrostatic potential surface areas (S) of separate cations and anions of ILs were firstly applied to develop predictive models for ecotoxicity on Vibrio fischeri. In addition, an intelligent algorithm named extreme learning machine (ELM) was employed to establish the predictive model. The squared correlation coefficients (R), the average absolute error (AAE%) and the root-mean-square error (RMSE) of the developed model are 0.9272, 0.2101 and 0.3262 for the entire set, respectively. The proposed approach based on the high R and low deviation has remarkable potential for predicting ILs ecotoxicity on Vibrio fischeri.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122761DOI Listing

Publication Analysis

Top Keywords

vibrio fischeri
16
ionic liquids
8
electrostatic potential
8
ils ecotoxicity
8
predictive models
8
ecotoxicity vibrio
8
ils
6
ecotoxicity
5
assessing ecotoxicity
4
ecotoxicity ionic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!