Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a commonly used corrosion inhibitor, phosphate (PO) has a complicated effect on the fate and transport of lead (Pb) in drinking water systems. While the formation of pyromorphite has been recognized to be the major driving force of the Pb immobilization mechanism, the role of adsorption on iron oxides is still not clear. This study aims to clarify the contributions of adsorption and precipitation to Pb removal in a system containing both iron oxides and PO. A combination of batch experiments, X-ray absorption spectroscopy, infrared spectroscopy, and electron spectroscopy was employed to distinguish the adsorbed and precipitated Pb species. The results indicated that the adsorption of Pb on iron oxides still occurred even when the solution was supersaturated to pyromorphite (i.e., 5 mg/L P with 0.1-30 mg/L Pb in 0.01 M NaCl solution at neutral pH). In the tap water containing 0.92 mg/L P and 1 mg/L Pb, adsorption on iron oxides contributed more (62-67%) than precipitation (33-38%) in terms of Pb removal. Surprisingly, the pre-formed pyromorphite is transformed to adsorbed species after mixing with iron oxides in water for 24 h. The illustration of this transformation is important to understand the immobilization mechanisms and transport behaviors of Pb in drinking water systems after the utilization of PO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2020.115853 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!