Background: Recalcitrant cancers appear as a major obstacle to chemotherapy, prompting scientists to intensify the search for novel drugs to tackle the cell lines expressing multi-drug resistant (MDR) phenotypes.
Purpose: The purpose of this study was to evaluate the antiproliferative potential of a ferrulic acid derivative, 8,8-bis-(dihydroconiferyl)-diferulate (DHCF2) on a panel of 18 cancer cell lines, including various sensitive and drug-resistant phenotypes, belonging to human and animals. The mode of induction of cell death by this compound was further studied.
Methods: The antiproliferative activity, autophagy, ferroptotic and necroptotic cell death were evaluated by the resazurin reduction assay (RRA). CCRF-CEM leukemia cells were used for all mechanistic studies. A caspase-Glo assay was applied to evaluate the activity of caspases. Cell cycle analysis (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP) (JC-1) and reactive oxygen species (ROS) (HDCFH-DA) were assessed by flow cytometry.
Results: DHCF2 demonstrated impressive cytotoxic effects towards the 18 cancer cell lines tested, with IC values all below 6.5 µM. The obtained IC values were in the range of 1.17 µM (towards CCRF-CEM leukemia cells) to 6.34 µM (towards drug-resistant HCT116 p53 human colon adenocarcinoma cells) for DHCF2 and from 0.02 µM (against CCRF-CEM cells) to 122.96 µM (against multidrug-resistant CEM/ADR5000 leukemia cells) for the reference drug, doxorubicin. DHCF2 had IC values lower than those of doxorubicin, against CEM/ADR5000 cells and on some melanoma cell lines, such as MaMel-80a cells, Mel-2a cells, MV3 cells and SKMel-505 cells. DHCF2 induced autophagy as well as apoptosis in CCRF-CEM cells though caspases activation, MMP alteration and increase of ROS production.
Conclusion: The studied diferulic acid, DHCF2, is a promising antiproliferative compound. It deserves further indepth investigations with the ultimate aim to develop a novel drug to fight cancer drug resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2020.153215 | DOI Listing |
Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.
View Article and Find Full Text PDFBackground: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.
Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.
Alzheimers Dement
December 2024
MRC Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, United Kingdom.
Background: Accumulation of misfolded a-synuclein protein in intracellular inclusion bodies of dopaminergic neurons underlies the pathogenesis of synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). Therefore, clearance of misfolded α-synuclein from dopaminergic neurons could in principle offer a an approach for modifying synucleinopathies, which currently remain untreatable.
Method: In this study, we employ the Affinity-directed PROtein Missile (AdPROM) system consisting of the substrate receptor of the CUL2-E3 ligase complex VHL and a nanobody selectively recognising the human α-synuclein protein RESULT: We demonstrate targeted degradation of endogenous α-synuclein from human cell lines with exquisite selectivity.
Background: Progranulin (GRN) plays a critical role in familial frontotemporal dementia (fFTD), where GRN haploinsufficiency leads to reduction in PGRN levels in the brain, resulting in degeneration of neurons in the frontal lobe of brain responsible for personality, language, and behavior. FTD is the most common dementia in people under 60. Sortilin (Sort1), expressed by neurons, endocytoses, and delivers PGRN rapidly to lysosomes for degradation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UCSF Weill Institute for Neurosciences, San Francisco, CA, USA.
Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.
Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!