The role of flow in bacterial biofilm morphology and wetting properties.

Colloids Surf B Biointerfaces

Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples, Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy; CEINGE, Advanced Biotechnologies, 80145, Naples, Italy.

Published: April 2020

Biofilms are bacterial communities embedded in an extracellular matrix, able to adhere to surfaces. Different experimental set-ups are widely used for in vitro biofilm cultivation; however, a well-defined comparison among different culture conditions, especially suited to interfacial characterization, is still lacking in the literature. The main objective of this work is to study the role of flow on biofilm formation, morphology and interfacial properties. Three different in vitro setups, corresponding to stagnant, shaking, and laminar flow conditions (custom-made flow cell), are used in this work to grow single strain biofilms of Pseudomonas fluorescens AR 11 on glass coupons. Results show that flow conditions significantly influenced biofilm formation kinetics, affecting mass transfer and cell attachment/detachment processes. Distinct morphological patterns are found under different flow regimes. Static contact angle data do not depend significantly on biofilm growth conditions in the parametric range investigated in this work.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.111047DOI Listing

Publication Analysis

Top Keywords

role flow
8
biofilm formation
8
flow conditions
8
biofilm
5
flow
5
flow bacterial
4
bacterial biofilm
4
biofilm morphology
4
morphology wetting
4
wetting properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!