In order to clarify the ethylene dependent salt response mechanism in wheat, 2-week-old wheat seedlings of cultivar 'Qingmai 6' treated with water, sodium chloride (NaCl), NaCl and ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and NaCl and ethylene signaling inhibitor 1-methylcyclopropene (1-MCP) were collected and analyzed by transcriptional sequencing and isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. At least 1140 proteins and 73,401 genes were identified, and proteins including ribosomal proteins (RPs), nucleoside diphosphate kinases (CDPKs), transaldolases (TALs), beta-glucosidases (BGLUs), phosphoenlpyruvate carboxylases (PEPCs), superoxide dismutases (SODs), and 6-phosphogluconate dehydrogenases (6-PGDHs) were significantly differently expressed. These genes and proteins revealed that ethylene dependent salt response through RPs activation, chaperones synthesis, the reactive oxygen species (ROS) scavenging, and carbohydrate metabolites pathway. Our results provided transcriptomics and proteomics information with respect to the molecular mechanisms of ethylene regualted salt response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.126866DOI Listing

Publication Analysis

Top Keywords

salt response
16
ethylene dependent
12
dependent salt
12
nacl ethylene
8
ethylene
6
complementary analyses
4
analyses transcriptome
4
transcriptome itraq
4
itraq proteome
4
proteome revealed
4

Similar Publications

Trade-Offs Between Hydraulic Efficiency and Safety in Cotton ( L.) Stems Under Elevated CO and Salt Stress.

Plants (Basel)

January 2025

State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.

Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Unveiling the Role of in Cotton Salt Stress Tolerance: A Comprehensive Genomic and Functional Analysis of Genes.

Plants (Basel)

January 2025

Institute of Modern Agriculture, School of Life Sciences, Nantong University, Nantong 226019, China.

Proline, a critical osmoregulatory compound, is integral to various plant stress responses. The gene, which encodes the rate-limiting enzyme in proline biosynthesis, known as ∆1-pyrroline-5-carboxylate synthetase, is fundamental to these stress response pathways. While the functions of genes in plants have been extensively documented, their specific roles in cotton remain inadequately characterized.

View Article and Find Full Text PDF

The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the gene in regulating plant growth and adaptation to environmental stress has become a hot research topic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!