We previously developed a nose-to-brain delivery system using poly(ethylene glycol)-polycaprolactone block polymeric micelles modified by a cell-penetrating peptide, Tat (PEG-PCL-Tat). This system showed excellent delivery of the anti-cancer drug camptothecin to the brain and improved therapeutic efficacy in a brain tumor model. However, improvements are necessary to selectively deliver drugs to tumor sites once they enter the brain, and avoid toxic side effects to normal brain tissue. In this study, to develop tumor-selective novel polymeric micelles, mixed micelles consisting of Tat-conjugated polymer micelles and stearoyl-modified bombesin (Bom/PEG-PCL-Tat) were designed. The GRPR selectivity, cellular uptake, and cytotoxicity in C6 glioma cells as well as the intracerebral drug distribution and therapeutic efficacy of Bom/PEG-PCL-Tat mixed micelles after intranasal administration in C6 glioma orthotropic grafted rats were evaluated. Selective cellular uptake and marked cytotoxic effects against GRPR-expressing C6 glioma cells were observed, as well as C6 tumor tissue-specific accumulation in vivo. Rats treated with camptothecin subsequent to a brain tumor graft survived longer when the drug was delivered by Bom/PEG-PCL-Tat mixed micelles than by PEG-PCL-Tat micelles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2020.05.001 | DOI Listing |
ACS Nano
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.
View Article and Find Full Text PDFRSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China.
Indomethacin (IDM) is commonly used to treat chronic inflammatory diseases such as rheumatoid arthritis and osteoarthritis. However, long-term oral IDM treatment can harm the gastrointestinal tract. This study presents a design for encapsulating IDM within mixed micelles (MMs)-loaded dissolving microneedles (DMNs) to improve and sustain transdermal drug delivery.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Medical College, Inner Mongolia Minzu University, Tongliao 028043, China.
The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!