The α-galactosidase gene (galC) was cloned from Aspergillus oryzae YZ1 and expressed in Pichia pastoris. The galC (2319 bp) containing two introns encoded a protein of 726 amino acids. The activity of the α-galactosidase (GalC) increased 1-fold after coding sequence optimization. Purified GalC exhibited a single protein band (100 kDa) in SDS-PAGE. The optimum pH and temperature of GalC were pH 4.66 and 50 °C, respectively. Like many GH36 family α-galactosidases, GalC displayed its activities towards raffinose and stachyose. The Km values for pNPG, raffinose and stachyose were 2.16, 4.63 and 8.54 mM, respectively. The GalC retained about 90% activity within the pH range 3.0-8.0. The activity of GalC was inhibited by Cu, while Ca increased the enzyme activity. Different concentrations of glucose, mannose, galactose, xylose and sucrose slightly affected the activity of GalC. The GalC displayed strong resistance to trypsin, α-chymotrypsin, and proteinase K. Under simulated gastric conditions, GalC maintained most of its native activity after pepsin treatment for 3 h. The GalC could also effectively degrade raffinose and stachyose in soymilk. The GalC with high hydrolysis efficiency towards raffinose family oligosaccharides (RFOs) and strong resistance to proteases is considered to have great potential in food and feed industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.04.256 | DOI Listing |
Sci Rep
December 2024
Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA.
Lipocalin-2 (LCN2) is an acute-phase secretory molecule significantly upregulated in various neuroinflammatory and demyelinating conditions. Krabbe disease (KD) is a neurodegenerative lysosomal disorder caused by a galactosylceramidase (GALC) deficiency, accumulating cytotoxic psychosine in nervous systems, and subsequent neuroinflammation. Here, we show that LCN2 is highly overexpressed in GALC-deficient astrocytes.
View Article and Find Full Text PDFPLoS One
December 2024
Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.
bioRxiv
November 2024
Department of Medicine, Washington University, St. Louis, MO 63110.
There is growing evidence suggesting that the lysosome or lysosome dysfunction is associated with Alzheimer's disease (AD). Pathway analysis of post mortem brain-derived proteomic data from AD patients shows that the lysosomal system is perturbed relative to similarly aged unaffected controls. However, it is unclear if these changes contributed to the pathogenesis or are a response to the disease.
View Article and Find Full Text PDFKrabbe disease (KD) is an autosomal recessive lysosomal storage disorder caused by loss-of-function mutations in the gene, which encodes for the enzyme galactosylceramidase (GALC). GALC is crucial for myelin metabolism. Functional deficiency of GALC leads to toxic accumulation of psychosine, dysfunction and death of oligodendrocytes, and eventual brain demyelination.
View Article and Find Full Text PDFZhonghua Fu Chan Ke Za Zhi
October 2024
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing 100730, China.
To determine the carrier frequency and hot-spot variants of a custom-designed expanded carrier screening (ECS) panel with 216 diseases (216-ECS panel) within a Chinese population of childbearing age. Whole-exome sequencing data from a cohort of 3 097 unrelated healthy individuals (including 1 424 couples) from Peking Union Medical College Hospital between January 2013 and December 2023 were analyzed. Totally 220 genes which inherited in a recessive manner of 216-ECS panel were included in the analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!