Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Soft surfaces, including textiles are found throughout healthcare settings. Pathogens can survive for long periods of time on textiles, and can be transferred to and from the skin. Antimicrobial fabrics are used as an engineering control to prevent infection. Efficacy testing standards have limitations, including single microorganism challenges, multiple fabric plies tested, and lengthy contact times. We developed a novel method that better models in-use conditions through testing standardized mixtures of pathogens and normal skin microorganisms, artificial soils, and a 15-min contact time. Reproducible growth of all microorganisms from frozen stocks was achieved using this method. A novel rechargeable, monitorable N-halamine cotton cellulose fabric, containing 5885 ± 98 ppm of active chlorine, was evaluated with the new method using PBS, artificial sweat, and artificial sweat plus 5% serum as soil. Pathogens tested included Acinetobacter baumannii, Candida albicans, Escherichia coli, vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, methicillin-susceptible Staphylococcus aureus, and Pseudomonas aeruginosa. Each was tested singly and in the presence of a representative normal skin flora mixture, including: Acinetobacter lwoffii, Corynebacterium striatum, Micrococcus luteus, and Staphylococcus epidermidis. When tested singly, all microorganisms were reduced by 3.00 log or greater, regardless of artificial soil. In mixture, 4.00 log or greater reductions were achieved for all microorganisms. These results suggest that the novel testing method can be used to provide more comprehensive and realistic efficacy information for antimicrobial textiles intended for use in healthcare. Furthermore, the N-halamine fabric demonstrated efficacy against multiple pathogens, singly and in mixtures, regardless of the presence of artificial soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453850 | PMC |
http://dx.doi.org/10.1016/j.mimet.2020.105937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!