Enhancement of photosynthetic bacteria biomass production and wastewater treatment efficiency by zero-valent iron nanoparticles.

J Biosci Bioeng

Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding 071002, China.

Published: September 2020

Photosynthetic bacteria (PSB) wastewater treatment is a novel technology for wastewater purification and resources recovery but is restricted by low efficiency. This paper applied zero-valent iron nanoparticles (Fe NPs) to enhance its performance. Results showed that 20 mg/L Fe NPs under light-anaerobic condition significantly increased the PSB biomass production and wastewater chemical oxygen demand removal by 122% and 164.3%, and shortened the time required for wastewater purification by 33%; these effects were far more better than the addition of Fe. The mechanism was because the addition of Fe NPs promoted the intracellular ATP content and pigments (carotenoid and bacteriochlorophyll) contents, and up-regulated dehydrogenase and succinate dehydrogenase activity; the increase rate reached 38.7%, 39.6%, 22.0%, 23.9% and 218.2%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2020.04.004DOI Listing

Publication Analysis

Top Keywords

photosynthetic bacteria
8
biomass production
8
production wastewater
8
wastewater treatment
8
zero-valent iron
8
iron nanoparticles
8
wastewater purification
8
wastewater
5
enhancement photosynthetic
4
bacteria biomass
4

Similar Publications

Photodynamic therapy (PDT) is a promising noninvasive tumor treatment modality that relies on generating reactive oxygen species (ROS) and requires an adequate oxygen supply to the target tissue. However, hypoxia is a common feature of solid tumors and profoundly restricts the anti-tumor efficacy of PDT. In recent years, scholars have focused on exploring nanomaterial-based strategies for oxygen supplementation and integrating non-oxygen-consuming treatment approaches to overcome the hypoxic limitations of PDT.

View Article and Find Full Text PDF

Introduction: The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as Chlorella vulgaris, Scenedesmus obliquus and Rhodobacter capsulatus-PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based nondegradable plastics.

Background: As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics.

View Article and Find Full Text PDF

Potato is cultivated all the year round in Pakistan. However, the major crop is the autumn crop which is planted in mid-October and contributes 80-85% of the total production. The abrupt climate change has affected the weather patterns all over the world, resulting in the reduction of the mean air temperature in autumn by almost 1.

View Article and Find Full Text PDF

Increasing nitrogen use efficiency (NUE) remains a crucial topic in contemporary agriculture. Inoculation with endophytic diazotrophic bacteria offers a potential solution, but the results vary with the N-fertilization regime. Here, we examined the efficacy of inoculation with Herbaspirillum seropedicae strain HRC54 in enhancing NUE and promoting the growth of Marandu palisadegrass with varying levels of N-urea (0, 25, 50, and 100 mg N kg soil⁻).

View Article and Find Full Text PDF

Long-lasting and controlled-release borate as a biocide against microbial breeding in a recirculating cooling water system.

Sci Total Environ

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.

Based on the potential bactericidal properties of borate, we synthesized controlled-release borate (CRB) as a novel biocide to inhibit microbial proliferation in a recirculating cooling water system (RCS). In this study, toxicity experiments of CRB were conducted on the dominant bacteria and algae isolated from an actual RCS. The effects of CRB on biocidal performance and genotoxicity were evaluated in a simulated RCS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!