The Mnemiopsis Genome Project Portal: integrating new gene expression resources and improving data visualization.

Database (Oxford)

Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Published: January 2020

Following the completion of the genome sequencing and gene prediction of Mnemiopsis leidyi, a lobate ctenophore that is native to the coastal waters of the western Atlantic Ocean, we developed and implemented the Mnemiopsis Genome Project Portal (MGP Portal), a comprehensive Web-based data portal for navigating the genome sequence and gene annotations. In the years following the first release of the MGP Portal, it has become evident that the inclusion of data from significant published studies on Mnemiopsis has been critical to its adoption as the centralized resource for this emerging model organism. With this most recent update, the Portal has significantly expanded to include in situ images, temporal developmental expression profiles and single-cell expression data. Recent enhancements also include implementations of an updated BLAST interface, new graphical visualization tools and updates to gene pages that integrate all new data types. Database URL: https://research.nhgri.nih.gov/mnemiopsis/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211034PMC
http://dx.doi.org/10.1093/database/baaa029DOI Listing

Publication Analysis

Top Keywords

mnemiopsis genome
8
genome project
8
project portal
8
mgp portal
8
portal
6
data
5
mnemiopsis
4
portal integrating
4
gene
4
integrating gene
4

Similar Publications

Understanding how populations diverge is one of the oldest and most compelling questions in evolutionary biology. An in depth understanding of how this process operates in planktonic marine animals, where barriers for gene flow are seemingly absent, is critical to understanding the past, present, and future of ocean life. plays an important ecological role in its native habitat along the Atlantic coast of the Americas and is highly destructive in its non-native habitats in European waters.

View Article and Find Full Text PDF

The comparative study of the four non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera) provides insights into the origin of bilaterian traits. To complete our knowledge of the cell biology and development of these animals, additional non-bilaterian models are needed. Given the developmental, histological, ecological, and genomic differences between the four sponge classes (Demospongiae, Calcarea, Homoscleromorpha, and Hexactinellida), we have been developing the Oscarella lobularis (Porifera, class Homoscleromorpha) model over the past 15 years.

View Article and Find Full Text PDF

Light detection underlies a variety of animal behaviors, including those related to spatial orientation, feeding, avoidance of predators, and reproduction. Ctenophores are likely the oldest animal group in which light sensitivity based on opsins evolved, so they may still have the ancestral molecular mechanisms for photoreception. However, knowledge about ctenophore photosensitivity, associated morphological structures, molecular mechanisms involved, and behavioral reactions is limited and fragmented.

View Article and Find Full Text PDF

As the sister group to all other animals, ctenophores (comb jellies) are important for understanding the emergence and diversification of numerous animal traits. Efforts to explore the evolutionary processes that promoted diversification within Ctenophora are hindered by undersampling genomic diversity within this clade. To address this gap, we present the sequence, assembly and initial annotation of the genome of .

View Article and Find Full Text PDF

Bioinformatic Prohormone Discovery in Basal Metazoans: Insights from Trichoplax.

Methods Mol Biol

April 2024

Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.

Experimental discovery of neuropeptides and peptide hormones is a long and tedious task. Mining the genomic and transcriptomic sequence data with robust secretory peptide prediction tools can significantly facilitate subsequent experiments. We describe the application of various in silico neuropeptide discovery methods for the placozoan Trichopax adhaerens as an illustrated example and a powerful experimental paradigm for cellular and evolutionary biology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!