AI Article Synopsis

  • High fructose intake is linked to metabolic diseases, particularly affecting lipid metabolism in the small intestine, but the specific cell types involved remained unclear.
  • The study investigated how fructose influences the expression of lipid-related genes, focusing on the role of the fructose transporter Slc2a5 and ketohexokinase, assuming this effect occurs primarily in enterocytes.
  • Results showed that enterocytes increased lipogenic gene expression significantly in response to fructose, while this effect was not observed in mice lacking Slc2a5 or Khk, indicating these components are crucial for the process.

Article Abstract

Background: High intakes of fructose are associated with metabolic diseases, including hypertriglyceridemia and intestinal tumor growth. Although small intestinal epithelia consist of many different cell types, express lipogenic genes, and convert dietary fructose to fatty acids, there is no information on the identity of the cell type(s) mediating this conversion and on the effects of fructose on lipogenic gene expression.

Objectives: We hypothesized that fructose regulates the intestinal expression of genes involved in lipid and apolipoprotein synthesis, that regulation depends on the fructose transporter solute carrier family 2 member a5 [Slc2a5 (glucose transporter 5)] and on ketohexokinase (Khk), and that regulation occurs only in enterocytes.

Methods: We compared lipogenic gene expression among different organs from wild-type adult male C57BL mice consuming a standard vivarium nonpurified diet. We then gavaged twice daily for 2.5 d fructose or glucose solutions (15%, 0.3 mL per mouse) into wild-type, Slc2a5-knockout (KO), and Khk-KO mice with free access to the nonpurified diet and determined expression of representative lipogenic genes. Finally, from mice fed the nonpurified diet, we made organoids highly enriched in enterocyte, goblet, Paneth, or stem cells and then incubated them overnight in 10 mM fructose or glucose.

Results: Most lipogenic genes were significantly expressed in the intestine relative to the kidney, liver, lung, and skeletal muscle. In vivo expression of Srebf1, Acaca, Fasn, Scd1, Dgat1, Gk, Apoa4, and Apob mRNA and of Scd1 protein increased (P < 0.05) by 3- to 20-fold in wild-type, but not in Slc2a5-KO and Khk-KO, mice gavaged with fructose. In vitro, Slc2a5- and Khk-dependent, fructose-induced increases, which ranged from 1.5- to 4-fold (P < 0.05), in mRNA concentrations of all these genes were observed only in organoids enriched in enterocytes.

Conclusions: Fructose specifically stimulates expression of mouse small intestinal genes for lipid and apolipoprotein synthesis. Secretory and stem cells seem incapable of transport- and metabolism-dependent lipogenesis, occurring only in absorptive enterocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330472PMC
http://dx.doi.org/10.1093/jn/nxaa113DOI Listing

Publication Analysis

Top Keywords

lipogenic gene
12
lipogenic genes
12
nonpurified diet
12
fructose
8
fructose lipogenic
8
gene expression
8
cell types
8
lipogenic
6
expression
5
cell-type-specific ketohexokinase-dependent
4

Similar Publications

Nonalcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disorders following liver transplantation. The prorenin receptor (PRR) plays a role in glucose and lipid metabolism, and the hepatic dysregulation of PRR is associated with the upregulation of several molecular pathways, such as the mammalian target of rapamycin (mTOR) and Peroxisome proliferator-activated receptor (PPAR) that promotes hepatic lipogenesis and leads to lipid accumulation in hepatocytes by upregulation of lipogenic genes. PRR inhibition leads to a reduction in the hepatic expression of sortilin-1 and low-density lipoprotein receptor (LDLR) levels and down-regulation of pyruvate dehydrogenase (PDH) and acetyl-CoA carboxylase (ACC) and reduces fatty acids synthesis in hepatocytes.

View Article and Find Full Text PDF

Serum miR-365b-5p/miR-222-5p as a potential diagnostic biomarker for long-term weight loss in patients with morbid obesity after bariatric surgery.

Metabolism

December 2024

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Malaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.

Background: The successful weight loss following bariatric surgery is not achieved in all patients with morbid obesity (MO). This study aims to determine whether a serum miRNA profile can predict this outcome.

Design: Thirty-three patients with MO were classified in "Good Responders" (GR, percentage of excess weight loss (%EWL) ≥ 50 %) or "Non-Responders" (NR, %EWL < 50 %) according to the %EWL 5-8 year following bariatric surgery.

View Article and Find Full Text PDF

The interplay of transcriptional regulator SREBP1 with AMPK promotes lipid biosynthesis in Mucor circinelloides WJ11.

Biochim Biophys Acta Mol Cell Biol Lipids

December 2024

Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China. Electronic address:

SREBP1 is a transcription factor that influences lipogenesis by regulating key genes associated with lipid biosynthesis, while AMPK, modulates lipid metabolism by regulating acetyl-CoA carboxylase. The exact role of these metabolic regulators in oleaginous microbes remains unclear. This study identified and manipulated the genes encoding SREBP1 (sre1) and α1 subunit of AMPK (ampk-α1) in Mucor circinelloides WJ11.

View Article and Find Full Text PDF

Introduction: The plasma membrane-bound protein, multi-drug resistance-associated protein 4 (), has gained attention for its pivotal role in facilitating the efflux of a wide range of endogenous and xenobiotic molecules. Its significance in adipogenesis and fatty acid metabolism has been brought to light by recent studies. Notably, research on knockout ( ) mice has established a link between the absence of and the development of obesity and diabetes.

View Article and Find Full Text PDF

Effect of miR-10a on the proliferation and differentiation of yak adipocyte precursors.

J Appl Genet

December 2024

College of Agriculture and Animal Husbandry, Qinghai University, Qinghai Province, Xining, 810016, People's Republic of China.

The fat content of yak meat is significantly correlated with the meat quality, and an appropriate fat content helps to improve the texture of the meat. The involvement of miR-10a in regulating the differentiation and proliferation of various cell types has been reported. Therefore, in this study, the effects of miR-10a on lipid droplet accumulation were investigated by transfection of yak adipocyte precursors with an miR-10a inhibitor, followed by Oil Red O, BODIPY, EdU staining, and cell cycle analysis of the transfected and control cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!