Haze interferes the transmission of scene radiation and significantly degrades color and details of outdoor images. Existing deep neural networks-based image dehazing algorithms usually use some common networks. The network design does not model the image formation of haze process well, which accordingly leads to dehazed images containing artifacts and haze residuals in some special scenes. In this paper, we propose a task-oriented network for image dehazing, where the network design is motivated by the image formation of haze process. The task-oriented network involves a hybrid network containing an encoder and decoder network and a spatially variant recurrent neural network which is derived from the hazy process. In addition, we develop a multi-stage dehazing algorithm to further improve the accuracy by filtering haze residuals in a step-bystep fashion. To constrain the proposed network, we develop a dual composition loss, content-based pixel-wise loss and total variation constraint. We train the proposed network in an end-to-end manner and analyze its effect on image dehazing. Experimental results demonstrate that the proposed algorithm achieves favorable performance against state-of-the-art dehazing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2020.2991509DOI Listing

Publication Analysis

Top Keywords

image dehazing
16
task-oriented network
12
network
9
network image
8
network design
8
image formation
8
formation haze
8
haze process
8
haze residuals
8
proposed network
8

Similar Publications

The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.

View Article and Find Full Text PDF

ODD-Net: a hybrid deep learning architecture for image dehazing.

Sci Rep

December 2024

Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Haze can significantly reduce visibility and contrast of images captured outdoors, necessitating the enhancement of images. This degradation in image quality can adversely affect various applications, including autonomous driving, object detection, and surveillance, where poor visibility may lead to navigation errors and obscure crucial details. Existing dehazing techniques face several challenges: spatial methods tend to be computationally heavy, transform methods often fall short in quality, hybrid methods can be intricate and demanding, and deep learning methods require extensive datasets and computational power.

View Article and Find Full Text PDF

Environmental monitoring systems based on remote sensing technology have a wider monitoring range and longer timeliness, which makes them widely used in the detection and management of pollution sources. However, haze weather conditions degrade image quality and reduce the precision of environmental monitoring systems. To address this problem, this research proposes a remote sensing image dehazing method based on the atmospheric scattering model and a dark channel prior constrained network.

View Article and Find Full Text PDF

With the advances in technology, humans tend to explore the world underwater in a more constructive way than before. The appearance of an underwater object varies depending on depth, biological composition, temperature, ocean currents, and other factors. This results in colour distorted images and hazy images with low contrast.

View Article and Find Full Text PDF

Adaptive haze pixel intensity perception transformer structure for image dehazing networks.

Sci Rep

September 2024

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China.

In the realm of deep learning-based networks for dehazing using paired clean-hazy image datasets to address complex real-world haze scenarios in daytime environments and cross-dataset challenges remains a significant concern due to algorithmic inefficiencies and color distortion. To tackle these issues, we propose SwinTieredHazymers (STH), a dehazing network designed to adaptively discern pixel intensities in hazy images and compute haze residue for clarity restoration. Through a unique three-branch design, we hierarchically modulate haze residuals by leveraging the global features brought by Transformer and the local features brought by Convolutional Neural Network (CNN) which has led to the algorithm's widespread applicability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!