AI Article Synopsis

Article Abstract

Mesoporous silica impregnate with Cyanex 272 (bis/2,4,4-trimethylpentyl/phosphinic acid) extractant was immobilized into an alginate matrix to obtain a composite sorbent easy to use and applicable in fixed-bed column continuous systems. The sorption efficiency of this material was tested for the recovery of Eu(III) ions from aqueous solutions in batch and continuous mode. The competition among rare earths ions (europium, lanthanum, and lutetium) and among rare earths and calcium or sodium ions was investigated. High calcium concentrations strongly reduce the sorption capacity of the alginate matrix that composes the hybrid material and the Cyanex 272 impregnated into silica powder improves the rare earths' sorption performance in this calcium charged media. The experimental breakthrough curves obtained were satisfactory fitted by Thomas model.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-08484-yDOI Listing

Publication Analysis

Top Keywords

alginate matrix
12
immobilized alginate
8
cyanex 272
8
rare earths
8
lanthanide recovery
4
recovery silica-cyanex
4
silica-cyanex 272
4
272 material
4
material immobilized
4
matrix mesoporous
4

Similar Publications

The high risks of traumatic cataract treatments promoted the development of the concept of autologous lens regeneration. Biochemical cues can influence the cellular behavior of stem cells, and in this case, biophysical cues may be the important factors in producing rapid activation of cellular behavior. Here we bio-printed mesenchymal stem cells (MSCs) using a commonly used bioink sodium alginate-gelatin blends, and investigated the induction effect of MSC differentiation towards lens epithelial stem cells (LESCs) under a combination of biochemical cues and biophysical cues.

View Article and Find Full Text PDF

Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.

View Article and Find Full Text PDF

Manipulated Slow Release of Florfenicol Hydrogels for Effective Treatment of Anti-Intestinal Bacterial Infections.

Int J Nanomedicine

January 2025

Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.

Objective: The difficulty of establishing slow release at intestinal infection sites, weak antibacterial effects, as well as the limited broad use of florfenicol oral formulations are the main targets of the current study. Novel hydrogels derived from sodium alginate were developed using a complexation form for florfenicol delivery to achieve slow release at the site of intestinal infection and enhance its antibacterial activity against .

Methods: The optimal formulation, physicochemical properties, stability, pH-responsive performance, antibacterial activity, and in vitro biosafety of the florfenicol hydrogels have been studied systematically.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a notoriously aggressive primary brain tumor characterized by elevated recurrence rates and poor overall survival despite multimodal treatment. Local treatment strategies for GBM are safer and more effective alternatives to systemic chemotherapy, directly tackling residual cancer cells in the resection cavity by circumventing the blood-brain barrier. Molecularly imprinted polymers (MIPs) are promising drug delivery systems due to their high-affinity binding cavities that enable tailored release kinetics.

View Article and Find Full Text PDF

Tuning local matrix compliance accelerates mesenchymal stem cell chondrogenesis in 3D sliding hydrogels.

Biomaterials

January 2025

Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. Electronic address:

The mechanical properties of the extracellular matrix critically regulate stem cell differentiation in 3D. Alginate hydrogels with tunable bulk stiffness and viscoelasticity can modulate differentiation in 3D through mechanotransduction. Such enhanced differentiation is correlated with changes in the local matrix compliance- the extent of matrix deformation under applied load.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!