Many cyanobacterial species co-occur commonly in a freshwater ecosystem and can be consumed simultaneously by zooplankton. Both Microcystis aeruginosa and Cylindrospermopsis raciborskii are the dominant species and coexist in eutrophic tropical waters, and they together are assumed to have exert a stronger effect on the life history traits of cladocerans than a single cyanobacterial species. In the present study, we tested the hypothesis with life-history experiments of Daphnia sienesis, a large cladoceran species in tropics. In the experiments, M. aeruginosa and C. raciborskii were used as a mixture of food with Chlorella pyrenoidosa for the experimental animals. D. sienesis showed excellent growth and survival on sole diets of C. pyrenoidosa (CP). By contrast, Daphnia's growth decreased significantly and reproduction was completely inhibited when cyanobacteria comprised 100% of the food offered. The supplementation of C. pyrenoidosa into cyanobacterial diets significantly decreased their harmful effects on Daphnia, who improved the life history traits with the reduction of cyanobacterial percentage in mixed foods, irrespective of cyanobacterial species. Compared with the cultures of D. sienesis fed with a single cyanobacteria species, the animals in the treatments fed both M.aeruginosa-FACHB469 (F469) and C. raciborskii N8 (N8) had a lower growth rate in all the proportion of C. pyrenoidosa (25% CP, 50% CP or 75% CP). The strongest synergistic inhibition by the two cyanobacterial strains was found in the treatments with the 25% CP (i.e., 25% CP + 37.5% F469 + 37.5% N8), and no animal survived to maturity and reproduced. Thus, the simultaneous exposure to the two cyanobacterial species should be taken into account in assessing the ecological risks of cyanobacterial blooms, since multiple cyanobacterial coexistence can result in strong synergistic inhibition on growth and reproduction of zooplankton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10646-020-02220-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!