Steroid estrogens, as typical endocrine disrupting chemicals (EDCs), have raised an increasing concern due to their endocrine disrupting effects on aquatic animals and potential hazards on human health. Batch experiments were conducted to study 17 beta-estradiol (E2) removal and Estradiol Equivalent Quantity (EEQ) elimination by anaerobic granular sludge (AnGS) combined with different valence iron sources. Results showed that E2 was effectively biodegraded and transformed into E1 by AnGS. The addition of different valence iron sources all promoted E2 degradation, reduced E2 Equivalent Quotient (EEQ) concentration, and increased methane production in the batch experiments. The enhancement effect of zero-valent iron (ZVI) on E2 removal and EEQ elimination was stronger than that of Fe and Fe in our experiments. The enhancement effect proportion of ZVI corrosion, Fe, and Fe in the process of E2 degradation by AnGS combined with ZVI were 42.26%, 40.21% and 17.53%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210892PMC
http://dx.doi.org/10.1038/s41598-020-64557-5DOI Listing

Publication Analysis

Top Keywords

iron sources
12
anaerobic granular
8
granular sludge
8
endocrine disrupting
8
batch experiments
8
eeq elimination
8
angs combined
8
valence iron
8
experiments enhancement
8
beta-estradiol biodegradation
4

Similar Publications

This study addresses the pervasive issue of particulate matter (PM) emission in urban areas, proposing a better approach using scanning electron microscope (SEM) techniques to identify plant species effective in airborne PM removal. Conducted in Bilaspur city, the research strategically selected six plant species across four distinct sites and applied the SEM-Image J method for analysis, yielding significant insights, especially in the respirable PM range. Among the tested plant species, Senna Siamea and Dalbergia Sissoo emerged as consistent and standout performers, displaying the highest PM removal efficiency across all sites.

View Article and Find Full Text PDF

Background: The transmission of Salmonella spp. to human through the consumption of contaminated food products of animal origin, mainly poultry is a significant global public health concern. The emerging multidrug resistant (MDR) clones of non-typhoidal Salmonella (NTS) serovars, have spread rapidly worldwide both in humans and in the food chain.

View Article and Find Full Text PDF

Fermi Level Equilibration and Charge Transfer at the Exsolved Metal-Oxide Interface.

J Am Chem Soc

January 2025

Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Exsolution is a promising approach for fabricating oxide-supported metal nanocatalysts through redox-driven metal precipitation. A defining feature of exsolved nanocatalysts is their anchored metal-oxide interface, which exhibits exceptional structural stability in (electro)catalysis. However, the electronic interactions at this unique interface remain unclear, despite their known impact on catalytic performance.

View Article and Find Full Text PDF

Probing the Photochemical Formation of Hydroxyl Radical from Dissolved Organic Matter: Insights into the HO-Dependent Pathway.

Environ Sci Technol

January 2025

Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.

This study quantifies the contribution of the HO-dependent pathway to hydroxyl radical (OH) production from the photolysis of dissolved organic matter (DOM). OH formation rates were cross-validated using benzoate and terephthalate as probe compounds for diverse DOM sources (reference isolates and whole waters). Catalase addition revealed that the HO-dependent pathway accounts for 10-20% of the total OH production in DOM isolate materials, but no significant correlation was observed between ambient iron (Fe) concentrations and HO-dependent OH formation.

View Article and Find Full Text PDF

Antiparasitic activity of the iron-containing milk protein lactoferrin and its potential derivatives against human intestinal and blood parasites.

Front Parasitol

February 2024

Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States.

An iron-containing milk protein named lactoferrin (Lf) has demonstrated antiparasitic and immunomodulatory properties against a variety of human parasites. This protein has shown its capability to bind and transport iron molecules in the vicinity of the host-pathogen environment. The ability of parasites to sequester the iron molecule and to increase their pathogenicity and survival depends on the availability of iron sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!