Vestigial-like family member 3 (VGLL3), a cofactor for TEAD transcription factors, promotes cancer cell proliferation by activating the Hippo pathway.

J Biol Chem

Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan. Electronic address:

Published: June 2020

Vestigial-like 3 (VGLL3) is a member of the VGLL family, whose members serve as cofactors for TEA domain-containing transcription factors (TEADs). TEADs promote tissue and tumor development together with the cofactors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Although VGLL3 is involved in tumor cell proliferation, its relationship with TEADs and YAP/TAZ remains largely unknown. To close this research gap, here we established tumor cells stably expressing VGLL3 and found that they exhibit enhanced proliferation. Notably, YAP and TAZ were inactivated in the VGLL3-expressing cells, coinciding with activation of the Hippo pathway, which suppresses YAP/TAZ activities. VGLL3 in combination with TEADs promoted expression of the Hippo pathway components large tumor suppressor kinase (LATS2) and angiomotin-like 2 (AMOTL2). VGLL3 was highly expressed in malignant breast tumor cells and osteosarcoma cells, and VGLL3 knockdown increased nuclear localization of YAP and TAZ. Knockdown of LATS2 or AMOTL2, as well as VGLL3 knockdown, repressed proliferation of breast tumor cells. Together, these results suggest that VGLL3 together with TEADs promotes cell proliferation by activating the Hippo pathway through LATS2 and AMOTL2, leading to YAP/TAZ inactivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324512PMC
http://dx.doi.org/10.1074/jbc.RA120.012781DOI Listing

Publication Analysis

Top Keywords

hippo pathway
16
cell proliferation
12
tumor cells
12
vgll3
9
transcription factors
8
proliferation activating
8
activating hippo
8
yap taz
8
breast tumor
8
cells vgll3
8

Similar Publications

: With the rise in prevalence of diagnostic genetic techniques like RNA sequencing and whole exome sequencing (WES), as well as biological treatment regiments for cancer therapy, several genes have been implicated in carcinogenesis. This review aims to update our understanding of the Neurofibromatosis 2 (NF2) gene and its role in the pathogenesis of various cancers. : A comprehensive search of five online databases yielded 43 studies that highlighted the effect of sporadic NF2 mutations on several cancers, including sporadic meningioma, ependymoma, schwannoma, mesothelioma, breast cancer, hepatocellular carcinoma, prostate cancer, glioblastoma, thyroid cancer, and melanoma.

View Article and Find Full Text PDF

Background: Almonertinib is the initial third-generation EGFR-TKI in China, but its resistance mechanism is unknown. Cancer-associated fibroblasts (CAFs) are essential matrix components in the tumor microenvironment, but their impact on almonertinib resistance is unknown. This study aimed to explore the correlation between CAFs and almonertinib resistance in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

A feedback loop between Paxillin and Yorkie sustains Drosophila intestinal homeostasis and regeneration.

Nat Commun

January 2025

The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.

Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs).

View Article and Find Full Text PDF

Background: Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection.

Methods And Results: We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.

View Article and Find Full Text PDF

The Hippo Signaling Pathway Manipulates Cellular Senescence.

Cells

December 2024

Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.

The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!