Effects of Processing Parameters on Mechanical Properties of Silicon Carbide Nanoparticle-Reinforced Aluminium Alloy Matrix Composite Materials.

J Nanosci Nanotechnol

Laboratory of Advanced Materials Processing, EMPA-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland.

Published: October 2020

Nano-silicon carbide (nSiC) particle-reinforced aluminium (Al) 6061 alloy matrix composites were fabricated by high-energy ball milling, hot-pressing (HP), and hot-forging (HF). The composite powders were degassed and the composites were synthesised under air and/or vacuum. Mechanical properties of the obtained composite materials were evaluated using various tests, including indentation, compression, four-point bending, and tensile tests as well as by microstructural observations. Different amounts of nSiC were added and the mechanical properties of the obtained composite materials were measured and discussed. The microstructures of the composites depended on the nSiC content and synthesis conditions. The Vickers hardness and tensile strength values of the nSiC reinforced Al 6061 composites were approximately three times higher than that of a pure Al 6061 alloy bulk. The results demonstrated that the small amount of nSiC particles functioned as efficient reinforcement material in the Al 6061 alloy matrix composite material and that the strength and ductility of the composite material can be controlled by adjusting the processing parameters and nSiC content.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.17884DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
alloy matrix
12
composite materials
12
6061 alloy
12
processing parameters
8
matrix composite
8
properties composite
8
nsic content
8
composite material
8
composite
6

Similar Publications

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.

View Article and Find Full Text PDF

Background: The paratenon has been shown to promote Achilles tendon healing, but the evidence supporting the role of paratenon protection technique in Achilles tendon repair is sparse. We retrospectively assessed the results of a paratenon-sparing repair technique vs an open giftbox repair of Achilles tendon ruptures.

Methods: Patients with Achilles tendon rupture who underwent surgical treatment at our hospital between January 2015 and August 2021 were retrospectively reviewed.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Measurement and Analysis of Optical Transmission Characteristics of the Human Skull.

J Biophotonics

January 2025

Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!