In the present study, we evaluated the immunological responses induced by dengue vaccines under experimental conditions after delivery via a transcutaneous (TC) route. Vaccines against type 2 Dengue virus particles (DENV2 New Guinea C (NGC) strain) combined with enterotoxigenic (ETEC) heat-labile toxin (LT) were administered to BALB/c mice in a three-dose immunization regimen via the TC route. As a control for the parenteral administration route, other mouse groups were immunized with the same vaccine formulation via the intradermic (ID) route. Our results showed that mice vaccinated either via the TC or ID routes developed similar protective immunity, as measured after lethal challenges with the DENV2 NGC strain. Notably, the vaccine delivered through the TC route induced lower serum antibody (IgG) responses with regard to ID-immunized mice, particularly after the third dose. The protective immunity elicited in TC-immunized mice was attributed to different antigen-specific antibody properties, such as epitope specificity and IgG subclass responses, and cellular immune responses, as determined by cytokine secretion profiles. Altogether, the results of the present study demonstrate the immunogenicity and protective properties of a dengue vaccine delivered through the TC route and offer perspectives for future clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290698PMC
http://dx.doi.org/10.3390/v12050514DOI Listing

Publication Analysis

Top Keywords

dengue vaccines
8
ngc strain
8
protective immunity
8
vaccine delivered
8
delivered route
8
route
6
transcutaneous administration
4
dengue
4
administration dengue
4
vaccines study
4

Similar Publications

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.

View Article and Find Full Text PDF

Animal Models, Therapeutics, and Vaccine Approaches to Emerging and Re-Emerging Flaviviruses.

Viruses

December 2024

Department of Epidemiology, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3500, USA.

Flaviviruses are arthropod-borne viruses primarily transmitted through the mosquito or genus of mosquitos. These viruses are predominantly found in tropical and subtropical regions of the world with their geographical spread predicted to increase as global temperatures continue to rise. These viruses cause a variety of diseases in humans with the most prevalent being caused by dengue, resulting in hemorrhagic fever and associated sequala.

View Article and Find Full Text PDF

Introduction of Vector-Borne Infections in Europe: Emerging and Re-Emerging Viral Pathogens with Potential Impact on One Health.

Pathogens

January 2025

Department of Clinical and Experimental Sciences, Unit of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, 25123 Brescia, Italy.

The rise and resurgence of vector-borne diseases (VBDs) in Europe pose an expanding public health challenge, exacerbated by climate change, globalization, and ecological disruptions. Both arthropod-borne viruses (arboviruses) transmitted by ticks such as Crimean-Congo hemorrhagic fever and arboviruses transmitted by mosquitoes like dengue, Chikungunya, Zika, and Japanese encephalitis have broadened their distribution due to rising temperatures, changes in rainfall, and increased human mobility. By emphasizing the importance of interconnected human, animal, and environmental health, integrated One Health strategies are crucial in addressing this complex issue.

View Article and Find Full Text PDF

With the advent of a variety of vaccines against viral infections, there are multiple viruses that can be prevented via vaccination. However, breakthrough infections or uncovered strains can still cause vaccine-preventable viral infections (VPVIs). Therefore, timely diagnosis, treatment, and surveillance of these viruses is critical to patient care and public health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!