Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239485PMC
http://dx.doi.org/10.1371/journal.ppat.1008476DOI Listing

Publication Analysis

Top Keywords

adaptation human
8
human cytomegalovirus
8
genetic diversity
8
intra-species diversity
8
functional characterization
8
adaptive variants
8
viral
6
ongoing adaptation
4
human
4
cytomegalovirus host
4

Similar Publications

The formation, maintenance, and loss of island biodiversity.

Yi Chuan

January 2025

Center for Global Change and Ecological Forecasting, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.

Due to the unique geographical features of large numbers, isolated by water and diverse formation histories, islands have become natural laboratories for ecological and evolutionary research. Islands have a high proportion of endemic species and disharmony in representing the species compared with that in the continent, which provides a good opportunity to explore the formation of island biodiversity. In this review, we focuse on island ecosystems and describes the progress of research in island biogeography in recent years from three aspects: formation, maintenance, and loss of island biodiversity.

View Article and Find Full Text PDF

The northern part of Asia, including Siberia, the Mongolian Plateau, and northern China, is not only a crossroads for population exchange on the Eurasian continent but also an important bridge connecting the American continent. This region holds a unique and irreplaceable significance in exploring the origins of humanity, tracking human migration routes, and elucidating evolutionary mechanisms. Despite the limited number of samples unearthed, varying preservation conditions, and constraints of technical means, our understanding of the interactions among populations in northern Asia is still in its infancy.

View Article and Find Full Text PDF

The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.

View Article and Find Full Text PDF

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!