Experimental Breast Cancer Models: Preclinical Imaging Perspective.

Curr Radiopharm

Department of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne, Turkey.

Published: September 2021

Background: Breast cancer is the leading cause of cancer in women. 13% of breast cancer patients are at a distant stage and mortality is due to metastases rather than primary disease. The unique genetic structure and natural process of breast cancer make it a very suitable area for targeted therapies. Experimental tumor models are validated methods to examine the pathogenesis of cancer, the onset of the neoplastic process and progression.

Objective: This study aims to review the current literature on experimental breast cancer models and to bring a new perspective to the use of these models in teranostic preclinical studies in terms of the imaging.

Methods: Search for relevant literature from academic databases using keywords (Breast cancer, theranostic, preclinical imaging, tumor models, animal study, and tailored therapy) was conducted. The full text of the articles was reached and reviewed. Current scientific data has been reevaluated and compiled according to subtitles.

Results And Conclusion: The development of animal models for breast cancer research has been done in the last century. Imaging methods used in breast cancer are used for tumor localization, quantification of tumor mass, imaging of genes and proteins, evaluation of tumor microenvironment, evaluation of tumor cell proliferation and metabolism and treatment response evaluation. Since human breast cancer is a heterogeneous group of diseases in terms of genetics and phenotype; it is not possible for a single model to adequately address all aspects of breast cancer biology. Considering that each model has advantages and disadvantages, the most suitable model should be chosen to verify the thesis of the study.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1874471013666200508080250DOI Listing

Publication Analysis

Top Keywords

breast cancer
40
cancer
12
breast
9
experimental breast
8
cancer models
8
preclinical imaging
8
tumor models
8
evaluation tumor
8
models
6
tumor
6

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

T cell induced expression of Coronin-1A facilitates blood-brain barrier transmigration of breast cancer cells.

Sci Rep

December 2024

Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.

In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.

View Article and Find Full Text PDF

Background: Benzodiazepines are the third most misused medication, with many patients having their first exposure during a surgical episode. We sought to characterize factors associated with new persistent benzodiazepine use (NPBU) among patients undergoing cancer surgery.

Patients And Methods: Patients who underwent cancer surgery between 2013 and 2021 were identified using the IBM-MarketScan database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!