Strong Coupling Thermodynamics of Open Quantum Systems.

Phys Rev Lett

Departamento de Física Teórica, Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid, Spain and CCS-Center for Computational Simulation, Campus de Montegancedo UPM, 28660 Boadilla del Monte, Madrid, Spain.

Published: April 2020

AI Article Synopsis

Article Abstract

A general thermodynamic framework is presented for open quantum systems in fixed contact with a thermal reservoir. The first and second law are obtained for arbitrary system-reservoir coupling strengths, and including both factorized and correlated initial conditions. The thermodynamic properties are adapted to the generally strong coupling regime, approaching the ones defined for equilibrium, and their standard weak-coupling counterparts as appropriate limits. Moreover, they can be inferred from measurements involving only system observables. Finally, a thermodynamic signature of non-Markovianity is formulated in the form of a negative entropy production rate.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.160601DOI Listing

Publication Analysis

Top Keywords

strong coupling
8
open quantum
8
quantum systems
8
coupling thermodynamics
4
thermodynamics open
4
systems general
4
general thermodynamic
4
thermodynamic framework
4
framework presented
4
presented open
4

Similar Publications

Organophosphorus pesticides (OPs) are widely used in agricultural production, posing a great threat to human health and the environment. Given that different OPs present different toxicology and toxicities, identifying individual pesticide residues becomes important for assessing food safety and environmental implications. In this work, a kinetics difference-driven analyte hydrolysis strategy is proposed for the first time and validated to identify -nitrophenyl pesticides by developing an organophosphorus hydrolase-like nanozyme-coded sensor array.

View Article and Find Full Text PDF

Spin Chains with Highly Quantum Character through Strong Covalency in CaCrN.

J Am Chem Soc

January 2025

Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

The insulating transition metal nitride CaCrN consists of sheets of triangular [CrN] units with symmetry that are connected via quasi-1D zigzag chains. Due to strong covalency between Cr and N, Cr ions are unusually low-spin, and = 1/2. Magnetic susceptibility measurements reveal dominant quasi-1D spin correlations with very large nearest-neighbor antiferromagnetic exchange = 340 K and yet no sign of magnetic order down to = 0.

View Article and Find Full Text PDF

Biological activities of lichen extracts and UHPLC-ESI-QTOF-MS analysis of their secondary metabolites.

Front Pharmacol

January 2025

Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.

This research was designed to investigate the metabolite profiling, phenolics content, and the trypanocidal, nematicidal, antibacterial, antifungal, and free radical scavenging properties of Motyka. The air-dried material was extracted successively with dichloromethane and methanol (UlMeOH). Two phases were obtained from the extract with dichloromethane, one soluble in methanol (UlDCM-s) and the other insoluble (UlDCM-i).

View Article and Find Full Text PDF

Settling aggregates transport organic matter from the ocean surface to the deep sea and seafloor. Though plankton communities impact carbon export, how specific organisms and their interactions affect export efficiency is unknown. Looking at 15 years of eDNA sequences (18S-V4) from settling and sedimented organic matter in the Fram Strait, here we observe that most phylogenetic groups were transferred from pelagic to benthic ecosystems.

View Article and Find Full Text PDF

Establishment of Gas-Liquid-Solid Interface on Multilevel Porous CuO for Potential-Driven Selective CO Electroreduction toward C or C Products.

ACS Appl Mater Interfaces

January 2025

College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China.

Copper-based catalysts demonstrate distinctive multicarbon product activity in the CO electroreduction reaction (CORR); however, their low selectivity presents significant challenges for practical applications. Herein, we have developed a multilevel porous spherical CuO structure, wherein the mesopores are enriched with catalytic active sites and effectively stabilize Cu, while the macropores facilitate the formation of a "gas-liquid-solid" three-phase interface, thereby creating a microenvironment with an increasing water concentration gradient from the interior to the exterior. Potential-driven phase engineering and protonation synergistically optimize the reaction pathway, facilitating a switch between CO and CH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!