We demonstrate the possibility of realizing Young's double-slit interference in a hydrogen atom via ab initio simulations. By exposing the hydrogen atom to a high-frequency intensive laser pulse, the bound state distorts into a dichotomic Kramers-Henneberger state whose photoelectron momentum distribution imprints a double-slit interference structure. The dichotomic hydrogen atom presents molecular peculiarities, such as charge-resonance enhanced ionization, electron spin flipping due to the non-Abelian Berry phase. In return, the photoelectron momentum distribution carrying the double-slit interference structure provides unambiguous evidence on the existence of Kramers-Henneberger states, and thus the adiabatic stabilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.163201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!