Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The normal density of a translation-invariant superfluid often vanishes at zero temperature, as is observed in superfluid Helium and conventional superconductors described by BCS theory. Here we show that this need not be the case. We investigate the normal density in models of quantum critical superfluids using gauge-gravity duality. Models with an emergent infrared Lorentz symmetry lead to a vanishing normal density. On the other hand, models which break the isotropy between time and space may enjoy a nonvanishing normal density, depending on the spectrum of irrelevant deformations around the underlying quantum critical ground state. Our results may shed light on recent measurements of the superfluid density and low energy spectral weight in superconducting overdoped cuprates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.161604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!