The cycloaddition of ethylene, cyanoethylene, and propylene to a five-membered P/B frustrated Lewis pair (FLP) is shown to be highly favorable under normal conditions, as confirmed by the computed thermodynamic and kinetic data. All of these cycloaddition reactions are concerted as highlighted by the intrinsic reaction coordinate (IRC) and Wiberg bond index calculations. Almost 70% of the reaction force is required for structural orientation to initiate electronic activity. The reactions are interpreted by the frontier molecular orbital (FMO) analysis and conceptual density functional theory (DFT)-based reactivity descriptors. It appears that ethylene and propylene will act as nucleophiles, while the FLP will act as an electrophile throughout the cycloaddition reaction, however, cyanoethylene will act as an electrophile and the FLP as a nucleophile. Regioselectivities of the cycloadditon of cyanoethylene and propylene to the FLP are further verified through philicity and dual descriptors. It is demonstrated that an FLP can be forced to act as an electrophile or a nucleophile by intelligently selecting its partner in a cycloaddition reaction. Even the P and B centers would behave differently within the same FLP. This strategy may be properly exploited by the experimentalists in designing a suitable reaction for the synthesis of any useful molecule possessing the desired property.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c02799DOI Listing

Publication Analysis

Top Keywords

cycloaddition reactions
8
p/b frustrated
8
frustrated lewis
8
lewis pair
8
cyanoethylene propylene
8
will electrophile
8
cycloaddition reaction
8
flp
6
cycloaddition
5
reaction
5

Similar Publications

Synthesis of Benzazepines Bearing Three Contiguous Carbon Stereocenters through Pd(II)-Catalyzed [3 + 2] Cycloaddition of -Aryl Nitrones with Allenoates.

J Org Chem

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.

A cascade reaction of Pd(II)/dppben-catalyzed [3 + 2] cycloaddition of -aryl nitrones with allenoates and sequential reduction has been developed for the synthesis of functionalized benzazepines bearing three contiguous carbon stereocenters in moderate to good yields ranging from 15 to 82% and high diastereoselectivity. The obtained benzazepines could be converted into various benzazepine scaffolds, and an estrone-derived benzazepine scaffold was prepared over four steps from estrone. More importantly, chiral benzazepine bearing three contiguous carbon stereocenters could be obtained in 88% ee value with chiral auxiliary.

View Article and Find Full Text PDF

Chitosan-Based Porous Carbon Materials with Built-In Lewis Acid Boron Sites for Enhanced CO Capture and Conversion via an Electron-Inducing Effect.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China.

Electron-induced effects, which are prevalent in adsorption and heterogeneous catalytic reactions, can significantly influence the state and uptake of adsorbates. Here, we demonstrate the in situ doping of electron-deficient boron into the backbone of chitosan-based porous carbon materials. Despite a reduction in specific surface area, the resulting boron-doped porous carbons (NBPCs) exhibit an enhanced CO adsorption performance, with sample NBPC-10 achieving CO adsorption capacities of 7.

View Article and Find Full Text PDF

Benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles are well known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free selective synthesis has always remained challenging as no comprehensive simple protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles in high to excellent yields with chemo-/regioselectivity from the library of benzothiazole/benzoxazole-ketones and aryl/alkyl-azides through an enolate-mediated organocatalytic azide-ketone [3 + 2]-cycloaddition under ambient conditions in a few hours. The commercial availability or quick synthesis of the starting materials and catalysts, a diverse substrate scope, chemo-/regioselectivity, quick synthesis of pharmaceutically active known compounds and their analogues, and numerous medicinal applications of functionalized benzothiazole/benzoxazole-triazoles are the key attractions of this metal-free organo-click reaction.

View Article and Find Full Text PDF

Base-Promoted [4 + 1 + 1] Multicomponent Tandem Cycloaddition of -Substituted Nitroarenes, Aldehydes, and Ammonium Salts To Access 2,4-Substituted Quinazoline Frameworks.

J Org Chem

January 2025

Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China.

We report a base-promoted, metal-free multicomponent tandem reaction, involving a [4 + 1 + 1] cycloaddition process between -substituted nitroarenes, aldehydes, and ammonium salts. Modifying the substituents on the nitroaromatic compounds effectively provides structurally diverse 2-substituted and 4-alkenylquinazolines with good to excellent yields (77%-90% and quinazoline 51 examples) and high tolerance for various inorganic ammonium salts (13 examples, such as NH·HO, NHCl, and NHHF). A new method for constructing 2,4-substituted quinazoline compounds with high selectivity from simple nitrogen source compounds was developed, and the reaction can be scaled up to a gram scale.

View Article and Find Full Text PDF

Enantioselective Heck/Tsuji-Trost reaction of flexible vinylic halides with 1,3-dienes.

Nat Commun

January 2025

College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.

The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!