Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To avoid hydrogen injection and to enhance the settleability of microbial biomass in biological treatment of nitrate-contaminated drinking water resources, a new method based on granulation of a mixture of hydrogen consumer denitrifiers (HCD) and microalgae is introduced. Decreasing hydraulic retention time (HRT) was applied as the selection pressure in an up-flow photobioreactor to increase the speed of granulation and nitrate removal under autotrophic condition during a 50-day operation. Formation of granules occurred at three phases including granule nucleation, growth of granule, and mature granule, with decreasing the values of ζ-potential from -19 mV to -4 mV. Enhancement of microbial attachment within granule formation could reduce the presence of total suspended solids in the effluent. Developed granules of HCD and microalgae could settle down with velocity of 40 ± 0.6 m/h when reaching the average size of 1.2 mm at day 40. Complete NO-N removal from drinking water was achieved from the initial stage of granulation until the end of operation at all HRTs of 3 days-5 h. The clear treated water was obtained at the growth phase when the chemical oxygen demand and phosphate were undetectable. Therefore, the application of HCD-microalgae granule is a promising way for nitrate removal from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.110674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!