Objective: To clarify the detailed pharmacokinetics (PK) of orally administered voriconazole in tear fluid (TF) of horses for evaluating the efficacy of voriconazole secreted into TF against equine keratomycosis.
Animals Studied: Five healthy Thoroughbred horses.
Procedures: Voriconazole was administrated through a nasogastric tube to each horse at a single dose of 4.0 mg/kg. TF and blood samples were collected before and periodically throughout the 24 hours after administration. Voriconazole concentrations in plasma and TF samples were analyzed using liquid chromatography-electrospray tandem-mass spectrometry. The predicted voriconazole concentration in both samples following multiple dosing every 24 hours was simulated by the superposition principle.
Results: The mean maximum voriconazole concentrations in plasma and TF were 3.3 μg/mL at 1.5 h and 1.9 μg/mL at 1.6 h, respectively. Mean half-life in both samples were 16.4 and 25.2 h, respectively. The ratio of predicted AUC at steady state in TF (51.3 μg∙h/mL) to previously published minimum inhibitory concentration (MIC) of Aspergillus and Fusarium species was >100 and 25.7, respectively.
Conclusions: This study demonstrated the detailed single-dose PK of voriconazole in TF after oral administration and simulated the predicted concentration curves in a multiple oral dosing. Based on the analyses of PK-PD, the simulation results indicated that repeated oral administration of voriconazole at 4.0 mg/kg/d achieves the ratio of AUC to MIC associated with treatment efficacy against Aspergillus species. The detailed PK-PD analyses against pathogenic fungi in TF can be used to provide evidence-based medicine for equine keratomycosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7496923 | PMC |
http://dx.doi.org/10.1111/vop.12764 | DOI Listing |
Virol J
January 2025
Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.
Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain; Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain. Electronic address:
Mice models serve as a valuable tool to study microbiome-immune system interactions. While the use of germ-free mice may represent the gold-standard method, antibiotic-based microbiome depletion provides a more cost-efficient and feasible system. The protocol here in presented provides a mild antimicrobial regime to deplete basal microbiota in 8-week-old C57BL/6 mice, aiming to ensure reproducibility in microbiota studies.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan. Electronic address:
Objectives: This study investigated the effects of thread design on the soft and hard tissues around implants in rat maxillary peri-implantitis-like lesions.
Methods: Fourteen, 9-week-old, female Wistar rats were used in this study. Two types of grade IV titanium tissue-level implants with a standard V-shape and buttress threads were prepared (control and test implants, respectively).
Int J Biol Macromol
January 2025
College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China. Electronic address:
Probiotics intervention by Lactobacillus acidophilus has potential effect on alleviating obesity and insulin resistance. However, the limited knowledge of functional substances and potential regulatory mechanisms hinder their widespread application. Herein, L.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
Department of Molecular and Translational Medicine, University of Brescia, Italy.
Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!