Qaroun and Wadi El-Rayan lakes are exposed to a huge amount of discharges from different sources and numerous anthropogenic activities. Therefore, the present work aimed to evaluate the impacts of metal pollution on two wild fish species; Tilapia zillii and Mugil cephalus collected from lake Qaroun (eastern and western parts) and Wadi El-Rayan lakes (upper and lower lakes). Accumulation of metals (Cu, Zn, Cd, and Pb) in water, sediment, and five vital tissues as well as metal pollution index (MPI), contamination factor (CF), and pollution load index (PLI) were integrated as metal pollution biomarkers. Generally, these integrated endpoints had the same trend and indicated that the eastern part of lake Qaroun was the most polluted site followed by the lower lake of Wadi El-Rayan. To assess the environmental genotoxicity, the percentage DNA damage in different tissues of both fish species was estimated using the comet assay technique. The percentage of DNA damages showed tissue-, species- and site-specification. Hazard index (HI) has been used as an evaluation index for human health associated with fish consumption at the studied sites. This index showed that all metals were in the safe limits at normal consumption levels while adverse health effects are expected to occur at the subsistence consumption level. The safe HI for each metal at normal consumption level does not neglect that the combined cumulative risk impact of all metals is a sign of warning and the health of fish consumers nearby contaminated sites is threatened.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-09095-3DOI Listing

Publication Analysis

Top Keywords

metal pollution
16
wadi el-rayan
16
el-rayan lakes
12
tilapia zillii
8
zillii mugil
8
mugil cephalus
8
qaroun wadi
8
fish species
8
lake qaroun
8
percentage dna
8

Similar Publications

Objective: Heavy metal pollution is one of the more recent problems of environmental degradation caused by rapid industrialization and human activity. The objective of this study was to isolate, screen, and characterize heavy metal-resistant bacteria from solid waste disposal sites.

Methods: In this study, a total of 18 soil samples were randomly selected from mechanical sites, metal workshops, and agricultural land that received wastewater irrigation.

View Article and Find Full Text PDF

Nanoporous high-entropy alloys and metallic glasses: advanced electrocatalytic materials for electrochemical water splitting.

Chem Commun (Camb)

January 2025

Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Electrochemical water splitting is a promising approach to convert renewable energy into hydrogen energy and is beneficial for alleviating environmental pollution and energy crises, and is considered a clean method to achieve dual-carbon goals. Electrocatalysts can effectively reduce the reaction energy barrier and improve reaction efficiency. However, designing electrocatalysts with high activity and stability still faces significant challenges, which are closely related to the structure and electronic configuration of catalysts.

View Article and Find Full Text PDF

Adverse reactions caused by waterborne contaminants constitute a major hazard to the environment. Controlling the pollutants released into aquatic systems through water degradation has been one of the major concerns of recent research. Bismuth-based perovskites have exhibited outstanding properties in the field of photocatalysis.

View Article and Find Full Text PDF

Acid mine drainage sludge (AMDS) can be utilized as a raw material to synthesize an efficient adsorbent through a more environmentally friendly approach for the removal of pollutants from water. In this study, iron ions were extracted from AMDS and then reacted with trimesic acid (BTC) under ambient conditions to synthesize Fe-BTC-, iron-based metal-organic frameworks. These materials demonstrate an exceptionally high specific surface area and excellent chemical stability.

View Article and Find Full Text PDF

Machine learning models for water safety enhancement.

Sci Rep

January 2025

Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, 4117-13114, Iran.

Humans encounter both natural and artificial radiation sources, including cosmic rays, primordial radionuclides, and radiation generated by human activities. These radionuclides can infiltrate the human body through various pathways, potentially leading to cancer and genetic mutations. A study was conducted using random sampling to assess the concentrations of radioactive isotopes and heavy metals in mineral water from Iran, consumable at Arak City.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!