Chikungunya fever is a major public health issue in India affecting millions of people and occurs due to Chikungunya. Chikungunya virus (CHIKV) is a single stranded RNA virus from the family of Togaviridae and genus alpha virus. It contain three structural proteins: glycosylated E1 and E2, embedded in the viral envelope, and a non-glycosylated nucleocapsid protein. Till date, researchers are working on inhibition of CHIKV but till now no cheap and effective medicine is available in the market. Therefore, the authors of this work thought of isoquinoline based noscapine to inhibit the nsP3 protease of CHIKV. The aim of the work is to understand the mechanism for the synthesis of noscapine theoretically using DFT. Further study the potential of all four isomers of noscapines {(13 (S,R), 14 (R,R), 15 (R,S) and 16 (S,S)} against nsP3 protease of CHIKV with the help of docking and MD simulation. The integrated e-pharmacophore binding affinity based virtual screening, docking and molecular dynamics simulation recognized four hits isomers as inhibition nsP3 protease of CHIKV. The docking energies of all the isomers of noscapine (13-16) with nsP3 protease CHIKV was found out to be more negative than baicalin (-8.06 kcal/mol) on selected sites. Amongst the isomers of noscapine, CMPD possessed best binding affinity with four hydrogen bonding interactions. Further, ADME properties and blood-brain barrier permeability properties have been calculated. DFT studies of all the isomers of noscapine was investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201138 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e02795 | DOI Listing |
J Cell Biol
March 2025
Guangzhou National Laboratory , Guangzhou, China.
β-coronavirus rearranges the host cellular membranes to form double-membrane vesicles (DMVs) via NSP3/4, which anchor replication-transcription complexes (RTCs), thereby constituting the replication organelles (ROs). However, the impact of specific domains within NSP3/4 on DMV formation and RO assembly remains largely unknown. By using cryogenic-correlated light and electron microscopy (cryo-CLEM), we discovered that the N-terminal and C-terminal domains (NTD and CTD) of SARS-CoV-2 NSP3 are essential for DMV formation.
View Article and Find Full Text PDFAutophagy
January 2025
Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden.
Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase.
View Article and Find Full Text PDFViruses
November 2024
Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, Melbourne, VIC 3030, Australia.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, and respiratory syncytial virus (RSV) are significant global health threats. The need for low-cost, easily synthesized oral drugs for rapid deployment during outbreaks is crucial. Broad-spectrum therapeutics, or pan-antivirals, are designed to target multiple viral pathogens simultaneously by focusing on shared molecular features, such as common metal cofactors or conserved residues in viral catalytic domains.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
The COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CL, Nsp5) and the papain-like protease (PL) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of , a nonpeptide 3CL inhibitor with an IC of 0.
View Article and Find Full Text PDFOpen Vet J
September 2024
Virology and Vaccine Research and Development Program, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines.
Background: Porcine epidemic diarrhea virus (PEDV) is a recurring coronavirus that causes severe diarrhea in pigs with high mortality and morbidity rates, especially in neonatal pigs. Despite the availability of vaccines, their efficacy is limited owing to antigenic differences between the vaccine and field strains, which poses a challenge to infection control. Antiviral drugs targeting conserved PEDV proteins show promise for complementing vaccination strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!