The article show the date associated with the work previously reported "Design, theoretical and correlation of the electronic and optical properties of diethynylphenylthiophene as photovoltaic materials", https://doi.org/10.1016/j.molstruc.2019.127093[1]. The authors reported graphics and tables building from of p-PDT, m-PDT, o-PDT, p-ZnPDT, m -ZnPDT and o-ZnPDT calculations as raw date, with the aim of to show electronic and optical properties, which can be analyzed by the reader. In this context, there exists an important number of renewable energies that are substituting the oil and the charcoal be used in the energetic supply. One of these alternatives is the use of solar cells, which can be use in diverse areas like telecommunications, remote systems of monitoring, lighting systems, water treatment systems, and products of consumption. The employment of the organic photovoltaic technology and photosensitized organic materials are based on the use of molecular organic materials for coverings for ceiling and windows of a house that allow the storage of energy. The OPVs and DSSC present π conjugated systems, giving them a high electronic relocated density, which allows catching the radiations with an energy range of wavelengths between 400 and 800 nm. The systems are derived of diethynylphenylthiophene (LMWOM) coupled to phenyldiamine (PD) as spacer, forming hyper conjugated macrocycles (-PDT, -PDT, -PDT, -ZnPDT, -ZnPDT and -ZnPDT). On the other hand, it is reported process electronic relationship with material sensitized and the bibliographic support of the publication topic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200241PMC
http://dx.doi.org/10.1016/j.dib.2020.105579DOI Listing

Publication Analysis

Top Keywords

electronic optical
12
optical properties
12
theoretical correlation
8
correlation electronic
8
properties diethynylphenylthiophene
8
diethynylphenylthiophene photovoltaic
8
organic materials
8
-pdt -pdt
8
-znpdt -znpdt
8
electronic
5

Similar Publications

Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

Optogenetic therapy is a promising vision restoration method where light sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like pre-clinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent.

View Article and Find Full Text PDF

Characterisation of the ocular inflammatory response to AAV reveals divergence by sex and age.

Mol Ther

January 2025

Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, EC1V 2PD, UK. Electronic address:

Progress for ocular AAV gene therapy has been hindered by AAV-induced inflammation, limiting dose escalation and long-term efficacy. Broadly, the extent of inflammatory responses alters with age and sex, yet these factors are poorly represented in pre-clinical development of ocular AAV gene therapies. Here, we combined clinical imaging, flow cytometry and bulk-sequencing of sorted microglia to interrogate the longitudinal inflammatory response following intravitreal delivery of AAV2 in young (3-month), middle aged (9-month) and old (18-month) Cx3cr1-creER:R26tdTomato+/- mice of both sexes.

View Article and Find Full Text PDF

A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!