Data on DOC and N from the Muz taw glacier in Central Asia.

Data Brief

State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Published: June 2020

This Data in Brief article provides a supplementary information to the dissolved organic carbon and nitrogen from the snow of Muz taw glacier in the Central Asia, which is related to the scientific article titled with "Characterization, sources and transport of dissolved organic carbon and nitrogen from a glacier in the Central Asia"[1]. Meanwhile, major ions (including Na, , NH , Ca, Mg, Cl, SO , NO , and NO ) were also reported. These data were analysed using descriptive statistics such as correlations and principle component analysis. Additionally, we conducted a literature review on DOC and N concentrations for the comparison. This article also presents the analysis data of the mass absorption cross section of DOC in snow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200776PMC
http://dx.doi.org/10.1016/j.dib.2020.105556DOI Listing

Publication Analysis

Top Keywords

glacier central
12
muz taw
8
taw glacier
8
central asia
8
dissolved organic
8
organic carbon
8
carbon nitrogen
8
data
4
data doc
4
doc muz
4

Similar Publications

The liverwort Arnellia fennica has a circumarctic distribution with disjunct and scarce localities in the Alps, Carpathians, and Pyrenees. Within the Carpathians, it is only known from the Tatra Mountains (in Poland), where so far only four occurrences have been documented in the forest belt of the limestone part of the Western Tatras. The species is considered a tertiary relict, which owes its survival during the last glaciation period to low-lying locations in areas not covered by ice.

View Article and Find Full Text PDF

Sea ice can profoundly influence photosynthetic organisms by altering subsurface irradiance, but it is susceptible to changes in the climate. The patterns and timing of sea ice cover can vary on a monthly to annual timescale in small sub-regions of the Western Antarctic Peninsula (WAP). During the latter part of the 20th century, sea ice coverage significantly decreased in the WAP, a trend that aligns with warming in this area.

View Article and Find Full Text PDF

Mountain regions of Central Asia are experiencing strong influences from climate change, with significant reductions in snow cover and glacial reserves. A comprehensive assessment of the potential consequences under the worst-case climate scenario is vital for adaptation measures throughout the region. Water balance analysis in the Naryn River basin was conducted for the baseline period of 1981-2000 including potential changes under the worst-case SSP5-8.

View Article and Find Full Text PDF

Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen's flow law, in which strain rate depends on stress raised to a power of = 3 to 4. In sharp contrast to this nonlinearity, we found by conducting large-scale, shear-deformation experiments that temperate ice is linear-viscous ( 1.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates uranium (U/U) ratios in environmental samples from the Pamir region to evaluate the influence of human nuclear activity on this remote area.
  • The U/U ratios found (ranging from 0.007256 to 0.007263) suggest a slight enrichment of uranium, indicating the presence of anthropogenic materials, particularly in cryoconite compared to soil and water.
  • The findings also suggest that while the area shows subtle enrichment of uranium, it remains relatively clean from local contamination, with environmental uranium largely resulting from historical global nuclear fallout rather than local sources.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!