Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types, and it is associated with a 5-year survival rate of <10% due to limited early detection methods and ineffective therapeutic options. Thus, an improved understanding of the mechanisms involved in the early stages of PDAC tumorigenesis is crucial in order to identify potential novel diagnostic and therapeutic targets. The most common signalling aberrations in PDAC occur in the Wnt/Notch signalling pathway, as well as within the epidermal growth factor receptor (EGFR) pathway and its associated ligands, EGF and transforming growth factor-β. In addition, the RAS family of oncogenes, which act downstream of EGFR, are found mutated in most pancreatic cancer samples. Plakoglobin, a component of the EGFR signalling pathway, serves an important role in normal cell adhesion; however, its role in PDAC is largely unknown. The present study used transcriptome sequencing and focussed proteome microarrays to identify dysregulated genes and proteins in PDAC. The presence of upregulated plakoglobin expression levels was identified as a distinguishing feature between the PDAC microenvironment and normal pancreatic tissue. Furthermore, plakoglobin was demonstrated to be associated with the differential upregulation of the PI3K/AKT and MAPK signalling pathways in the tumour microenvironment, which suggested that it may serve an important role in PDAC tumourigenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202312PMC
http://dx.doi.org/10.3892/ol.2020.11473DOI Listing

Publication Analysis

Top Keywords

pancreatic ductal
8
ductal adenocarcinoma
8
increased expression
4
expression plakoglobin
4
plakoglobin associated
4
associated upregulated
4
upregulated mapk
4
mapk pi3k/akt
4
pi3k/akt signalling
4
signalling pathways
4

Similar Publications

DNA replication initiation drives focal mutagenesis and rearrangements in human cancers.

Nat Commun

December 2024

Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.

View Article and Find Full Text PDF

Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.

View Article and Find Full Text PDF

Objective: Pancreatic cancer is characterized by low survival rate and rapid deterioration. Methyltransferase-like 14 (METTL14), as N6-methyladenosine (m6A) methyltransferase, is closely related to tumor progression. The purpose of this study is to look into how METTL14 affects pancreatic cancer tumorigenesis, cell division, and apoptosis.

View Article and Find Full Text PDF

Metabolic Plasticity in Pancreatic Cancer: The Mitochondrial Connection.

Mol Metab

December 2024

Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy. Electronic address:

Cellular metabolism plays a pivotal role in the development and progression of pancreatic ductal adenocarcinoma (PDAC), with dysregulated metabolic pathways contributing to tumorigenesis and therapeutic resistance. Distinct metabolic heterogeneity exists in pancreatic cancer, impacting patient prognosis, as variations in metabolic profiles influence tumor behavior and treatment responses. Here, we review the intricate interplay between mitochondrial dynamics, mitophagy, and cellular metabolism in PDAC.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths with a 5-year survival rate of 13%. Surgical resection remains the only curative option as systemic therapies offer limited benefit. Poor response to chemotherapy and immunotherapy is due, in part, to the dense stroma and heterogeneous tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!