AI Article Synopsis

Article Abstract

Objectives: Leptin (LEP) is a vital placental hormone that is known to affect different aspects of placental function and fetal development. The present study aimed to determine the association of placental LEP transcript abundance with maternal, placental, and newborn parameters.

Subjects/methods: In this retrospective case-control study, placental samples (n = 105) were collected from small (SGA) and appropriate (AGA) for gestational age full-term singleton pregnancies (n = 44 SGA and n = 61 AGA). Placental transcript abundance of LEP was assessed by real-time quantitative PCR after normalization to a reference gene panel. LEP methylation was measured using a quantitative MethyLight assay in a subset of samples (n = 54).

Results: Placental LEP transcript abundance was negatively and significantly associated with placental weight (β = -3.883, P = 0.015). This association continued to be significant in the SGA group (β = -10.332, P = 0.001), both in female (β = -15.423, P = 0.021) and male births (β = -10.029, P = 0.007). LEP transcript abundance was not associated with LEP methylation levels (Spearman's ρ = 0.148, P = 0.287).

Conclusion: We conclude that placental upregulation of LEP is an integral and fetal sex-independent component of placental growth restriction, which can be potentially targeted through maternal dietary modifications to improve fetoplacental growth.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41430-020-0649-9DOI Listing

Publication Analysis

Top Keywords

transcript abundance
16
placental
12
lep transcript
12
fetal sex-independent
8
placental growth
8
lep
8
placental lep
8
lep methylation
8
placental expression
4
expression leptin
4

Similar Publications

Improving polyketide biosynthesis by rescuing the translation of truncated mRNAs into functional polyketide synthase subunits.

Nat Commun

January 2025

State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China.

Modular polyketide synthases (mPKSs) are multidomain enzymes in bacteria that synthesize a variety of pharmaceutically important compounds. mPKS genes are usually longer than 10 kb and organized in operons. To understand the transcriptional and translational characteristics of these large genes, here we split the 13-kb busA gene, encoding a 456-kDa three-module PKS for butenyl-spinosyn biosynthesis, into three smaller separately translated genes encoding one PKS module in an operon.

View Article and Find Full Text PDF

The FIRE biosensor illuminates iron regulatory protein activity and cellular iron homeostasis.

Cell Rep Methods

January 2025

Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA. Electronic address:

On Earth, iron is abundant, bioavailable, and crucial for initiating the first catalytic reactions of life from prokaryotes to plants to mammals. Iron-complexed proteins are critical to biological pathways and essential cellular functions. While it is well known that the regulation of iron is necessary for mammalian development, little is known about the timeline of how specific transcripts network and interact in response to cellular iron regulation to shape cell fate, function, and plasticity in the developing embryo and beyond.

View Article and Find Full Text PDF

Viral auxiliary roles in hydrolytic and biosynthetic metabolism regulate prokaryotic microbial interactions in anaerobic digestion.

Water Res

January 2025

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Anaerobic digestion (AD) viruses have gained recognition as significant regulators of microbial interactions within AD communities, yet their ecological roles remain largely unexplored. In this study, we investigated the ecological roles of AD viruses in regulating microbial interactions among syntrophic hosts. We recovered 3921 diverse viral sequences from four full-scale anaerobic digesters and confirmed their widespread presence across 127 global metagenomic sampling sites (with >95 % sequence similarity), underscoring the ubiquity of prokaryotic viruses in AD-related systems.

View Article and Find Full Text PDF

Decipher syntrophies and adaptive response towards enhancing conversion of propionate to methane under psychrophilic condition.

Water Res

January 2025

Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.

View Article and Find Full Text PDF

There is an increasing need for biomarkers of senescent cell burden to facilitate the selection of participants for clinical trials. p16 is encoded by the CDKN2A locus, which produces five variant transcripts in humans, two of which encode homologous p16 proteins: p16, encoded by p16_variant 1, and p16ɣ, encoded by p16_variant 5. While distinct quantitative polymerase chain reaction primers can be designed for p16_variant 5, primers for p16_variant 1 also measure p16_variant 5 (p16_variant 1 + 5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!