Aim: The aim of this work was to evaluate if the use of a silicone device for muscular rebalancing (Alifix®) can be useful in treating of temporomandibular disorders (TMD) of muscular origin and improving the electromyographic indexes of the chewing muscles.
Materials And Methods: Thirteen patients (11 F and 2 M aged between 24 years and 65 years) with TMD of muscular origin according to diagnostic criteria (DC)/TMD were involved. At the first visit (T0), each patient reported the pain intensity of masseters and temporal muscles. A surface electromyography (EMG) was performed using Teethan® (Teethan S.p.A.) and then Alifix® was delivered instructing the patient on its use. Each subject was visited again after 1 month (T1) and 2 months (T2). New EMG had been made at T1 and T2, and patients were asked again to report the pain intensity. Statistical analysis was calculated between T0 and T1, T1 and T2, and T0 and T2 for all EMG, and muscle pain measurements by Wilcoxon test with statistical significance < 0.05.
Results: Regarding the pain values between T0 and T1, T1 and T2, and T0 and T2, the difference is statistically significant, since the intensity of pain between T0 and T2 is decreased, if not disappeared, in 90% of cases. The use of Alifix® also determined a gradual improvement in the values of the EMG indexes, which, however, is not statistically significant.
Conclusion: The effectiveness of Alifix® is demonstrated clinically but not at an instrumental level. Further studies involving a larger sample and taking longer therapy duration are needed.
Clinical Significance: Alifix® works by improving the blood circulation of the muscle, which allows the removal of catabolites with a consequent reduction of the algic symptomatology and promotes a greater supply of oxygen. It also encourages a conversion of IIA type muscle fibers into slow-twitch type I fibers that are more resistant to neuromuscular fatigue.
Download full-text PDF |
Source |
---|
Orphanet J Rare Dis
January 2025
Department of Human Genetics, Emory University, Atlanta, GA, USA.
Background: Late-onset Pompe disease (LOPD) is an autosomal recessive lysosomal storage disorder that results in severe progressive proximal muscle weakness. Over time, reductions in muscle strength result in respiratory failure and a loss of ambulation. Delayed diagnosis of LOPD deprives patients of treatments that can enhance quality of life and potentially slow disease progression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFJ Clin Neurol
January 2025
Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
Background And Purpose: This study was an open-label, dose-escalation, phase 1 clinical trial to determine the safety and dose of EN001 for patients with Duchenne muscular dystrophy (DMD). EN001, developed by ENCell, are allogeneic early-passage Wharton's jelly-derived mesenchymal stem cells that originate at the umbilical cord, with preclinical studies demonstrating their high therapeutic efficacy for DMD.
Methods: This phase 1 clinical trial explored the safety and tolerability of EN001 as a potential treatment option for patients with DMD.
Background: The United States military strives to prepare soldiers physically and mentally for war while preventing injury and attrition. Previous research has focused on physical injury risk factors but has not prospectively examined psychological risk factors.
Purpose: This study's purpose was to investigate whether self-efficacy is a risk factor for musculoskeletal injury in an initial military training environment and compare it to other known risk factors.
J Morphol
January 2025
Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russian Federation.
The colonial system of integration (CSI) provides intracolonial nutrient supply in many gymnolaemate bryozoans. In Ctenostomata, its presence is known for species with stolonal colonies, for example, vesicularioideans, but its structure is almost unexplored. The CSI is thought to be absent in alcyonidioideans and other ctenostomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!