Aim: The aim of this study is to compare the efficacy of dipotassium oxalate and potassium nitrate to occlude dentinal tubules.
Materials And Methods: This study utilized Parkinson model of longitudinal dentin tubule occluding properties of dentifrices under a 4-day acid challenge. Dentin disks of approximately 1.5 mm thick were sectioned from the crowns of the freshly extracted molars. The disks were randomized into three sets of 15 and treated with dipotassium oxalate, potassium nitrate, or used as a control. The disks were then subjected to a 4-day acid challenge and evaluated by scanning electron microscopy (SEM).
Results: On days 1, 2, and 3, dipotassium oxalate showed significant occlusion of dentinal tubules. On day 4, no significant difference was observed between dipotassium oxalate and potassium nitrate. Both test groups showed better occlusion properties in comparison to the control.
Conclusion: Through the use of a 4-day acid challenge, this study demonstrates that both agents can indeed occlude dentinal tubules. Initially, dipotassium oxalate does occlude dentinal tubules faster than potassium nitrate. However, at the conclusion of the acid challenge, minimal differences were observed in occlusion rate among the two agents. Further studies should be conducted to determine the efficacy of these two agents.
Clinical Significance: Both dipotassium oxalate and potassium nitrate can help treat patients with dentinal hypersensitivity.
Download full-text PDF |
Source |
---|
Org Biomol Chem
January 2025
College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
In this study, phosphoramide compounds were successfully synthesized a series of reaction transformations from P(O)H compounds. The process began with the formation of P-Se-Ar bonds, facilitated by the synergistic effect of phenylboronic acid, selenium, and appropriate ligands in the presence of copper. Following this, nucleophilic substitution reactions with amine compounds were conducted to create P-N bonds.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Kidney stone disease is a major risk factor for impaired renal function, leading to renal fibrosis and end-stage renal disease. High global prevalence and recurrence rate pose a significant threat to human health and healthcare resources. Investigating the mechanisms of kidney stone-induced injury is crucial.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.
View Article and Find Full Text PDFJ Food Sci
December 2024
School of Food Science and Technology, Jiangnan University, Wuxi, China.
Abundant polyphenols in Flos Sophorae Immaturus tea (FSIt) exhibited xanthine oxidase (XO) inhibitory activity. However, the XO inhibitory activity of FSIt was closely related to the processing methods. Herein, organic acids were employed as catalysts for polyphenol conversion during heat treatment and applied to enhance the XO inhibitory activity of FSIt; the potential mechanisms were clarified by polyphenols degradation and conversion analysis, omission experiment, and interaction assay.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
is one of the fungi that cause plant diseases. It damages plants by secreting large amounts of oxalic acid and cell wall-degrading enzymes. To meet this challenge, we designed a new pH/enzyme dual-responsive nanopesticide Pro@ZnO@Pectin (PZP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!