Shack-Hartmann wavefront sensors based on 2D refractive lens arrays and super-resolution multi-contrast X-ray imaging.

J Synchrotron Radiat

Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Baden-Wuerttemberg 76334, Germany.

Published: May 2020

AI Article Synopsis

  • Different methods of using 2D lens arrays as Shack-Hartmann sensors for hard X-rays are evaluated.
  • A novel combination of these sensors with super-resolution imaging is introduced to enhance multi-contrast imaging, demonstrating its effectiveness with a diamond lens as a test object.
  • The study also examines the radiation damage effects on an SHSX prototype during continuous exposure, indicating it maintains good performance over several hours despite modifications affecting image quality.

Article Abstract

Different approaches of 2D lens arrays as Shack-Hartmann sensors for hard X-rays are compared. For the first time, a combination of Shack-Hartmann sensors for hard X-rays (SHSX) with a super-resolution imaging approach to perform multi-contrast imaging is demonstrated. A diamond lens is employed as a well known test object. The interleaving approach has great potential to overcome the 2D lens array limitation given by the two-photon polymerization lithography. Finally, the radiation damage induced by continuous exposure of an SHSX prototype with a white beam was studied showing a good performance of several hours. The shape modification and influence in the final image quality are presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206553PMC
http://dx.doi.org/10.1107/S1600577520002830DOI Listing

Publication Analysis

Top Keywords

lens arrays
8
shack-hartmann sensors
8
sensors hard
8
hard x-rays
8
shack-hartmann wavefront
4
wavefront sensors
4
sensors based
4
based refractive
4
lens
4
refractive lens
4

Similar Publications

Anterior segment dysgenesis exerts its influence on a diverse array of ocular structures, encompassing the cornea, iris, ciliary body, anterior chamber and lens. We present a 20-month-old boy with bilateral corneal opacity. The visual acuity (VA) was 6/480 in both eyes.

View Article and Find Full Text PDF

Underwater acoustic transducers need to expand the coverage of acoustic signals as much as possible in most ocean explorations, and the directivity indicators of transducers are difficult to change after the device is packaged, which makes the emergence angle of the underwater acoustic transducer limited in special operating environments, such as polar regions, submarine volcanoes, and cold springs. Taking advantage of the refractive characteristics of sound waves propagating in different media, the directivity indicators can be controlled by installing an acoustic lens outside the underwater acoustic transducer. To increase the detection range of an underwater acoustic transducer in a specific marine environment, a curvature-determining method for the diverging acoustic lens of an underwater acoustic transducer is proposed based on the acoustic ray tracing theory.

View Article and Find Full Text PDF

A Critical Review of the Decarbonisation Potential in the U.K. Cement Industry.

Materials (Basel)

January 2025

Sustainable Manufacturing Systems Centre, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK.

As urbanisation and infrastructure development continue to drive rising cement demand, the imperative to significantly reduce emissions from this emissions-intensive sector has become increasingly urgent, especially in the context of global climate goals such as achieving net zero emissions by 2050. This review examines the status, challenges and prospects of low-carbon cement technologies and mitigation strategies through the lens of the U.K.

View Article and Find Full Text PDF

The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein.

View Article and Find Full Text PDF

Contact lenses have become integral tools in the realm of ocular therapeutics, extending beyond their primary function of refractive correction to encompass a diverse array of therapeutic applications. This review explores the evolving role of contact lenses in managing various ocular conditions, highlighting their efficacy in enhancing patient outcomes. Initially developed to correct refractive errors, contact lenses now serve as effective vehicles for delivering medications directly to the ocular surface, offering targeted treatment for conditions such as dry eye syndrome and corneal ulcers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!