Background: Among emerging circulating biomarkers, miRNA has the potential to detect lung cancer and follow the course of the disease. However, miRNA analysis deserves further standardization before implementation into clinical trials or practice. Here, we performed international ring experiments to explore (pre)-analytical factors relevant to the outcome of miRNA blood tests in the context of the EU network CANCER-ID.

Methods: Cell-free (cfmiRNA) and extracellular vesicle-derived miRNA (EVmiRNA) were extracted using the miRNeasy Serum/Plasma Advanced, and the ExoRNeasy Maxi kit, respectively, in a plasma cohort of 27 NSCLC patients and 20 healthy individuals. Extracted miRNA was investigated using small RNA sequencing and hybridization platforms. Validation of the identified miRNA candidates was performed using quantitative PCR.

Results: We demonstrate the highest read counts in healthy individuals and NSCLC patients using QIAseq. Moreover, QIAseq showed 15.9% and 162.9% more cfmiRNA and EVmiRNA miRNA counts, respectively, in NSCLC patients compared to healthy control samples. However, a systematic comparison of selected miRNAs revealed little agreement between high-throughput platforms, thus some miRNAs are detected with one technology, but not with the other. Adding to this, 35% (9 of 26) of selected miRNAs in the cfmiRNA and 42% (11 of 26) in the EVmiRNA fraction were differentially expressed by at least one qPCR platform; about half of the miRNAs (54%) were concordant for both platforms.

Conclusions: Changing of (pre)-analytical methods of miRNA analysis has a significant impact on blood test results and is therefore a major confounding factor. In addition, to confirm miRNA biomarker candidates screening studies should be followed by targeted validation using an independent platform or technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281602PMC
http://dx.doi.org/10.3390/cancers12051166DOI Listing

Publication Analysis

Top Keywords

mirna analysis
12
nsclc patients
12
mirna
10
healthy individuals
8
selected mirnas
8
multicenter evaluation
4
evaluation independent
4
independent high-throughput
4
high-throughput rt-qpcr
4
rt-qpcr technologies
4

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Revealing microRNA regulation in single cells.

Trends Genet

January 2025

Institute for Computational Genomic Medicine, Goethe University Frankfurt, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany. Electronic address:

MicroRNAs (miRNAs) are key regulators of gene expression and control cellular functions in physiological and pathophysiological states. miRNAs play important roles in disease, stress, and development, and are now being investigated for therapeutic approaches. Alternative processing of miRNAs during biogenesis results in the generation of miRNA isoforms (isomiRs) which further diversify miRNA gene regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!