2,7-Dibromocarbazole (2,7-DBCZ) is one of the most frequently detected polyhalogenated carbazoles (PHCZs) in the environmental media. 2,7-DBCZ has attracted public attention for its potential for dioxin-like toxicity and cardiovascular toxicity. However, researches on the potential mechanism of angiogenesis inhibition by 2,7-DBCZ is still insufficient. Herein, human umbilical vein endothelial cells (HUVECs) were applied to explore the angiogenic effect of 2,7-DBCZ and the potential underlying mechanisms. 2,7-DBCZ significantly inhibited tube formation in HUVECs in the non-toxic concentration range. PCR array showed that 2,7-DBCZ reduced the expression proportion between VEGFs and Ang2, thereby inhibiting tube formation in HUVECs. Then, small RNA interference and DNA methylation assays were adopted to explore the potential mechanisms. It has been found that angiopoietin2 (Ang2)-silencing recovered the tube formation inhibited by 2,7-DBCZ. The DNA methylation status of Ang2 promoter also showed a demethylation tendency after exposure. In conclusion, 2,7-DBCZ could demethylate the Ang2 promoter to potentiate Ang2 expression, thus altering angiogenic phenotype of HUVECs by reducing the proportion between Ang2 and VEGFs. The data presented here can help to guide safety measures on the use of dioxin-like PHCZs for their potential adverse effects and provide a method for identifying the relevant biomarkers to assess their cardiovascular toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.134156 | DOI Listing |
Plant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFCommun Biol
January 2025
Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
Sci China Life Sci
January 2025
Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease affecting the lung, kidney, and lymphatic system with a molecular mechanism of tuberous sclerosis complex 2 (TSC2) mutations. Vascular endothelial growth factor D (VEGF-D), a ligand for vascular endothelial growth factor receptor 3 (VEGFR3), is a diagnostic biomarker of LAM and is associated with lymphatic circulation abnormalities. This study explored the interaction between LAM cells and lymphatic endothelial cells (LECs) and the effects of rapamycin on this interaction, which may help to identify new targets for LAM treatment.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Semioquímicos, Brasília, DF, 70297-400, Brazil.
The small black stem bug, Paratibraca (= Glyphepomis) spinosa (Campos and Grazia 1998), is a rice pest in Brazil and is part of a complex of stink bugs that includes Oebalus poecilus (Dallas) and Tibraca limbativentris Stål. Together, these pentatomid species pose a serious threat to rice crops throughout South America. In this study, we identified the sex pheromone of P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!