A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System. | LitMetric

Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System.

iScience

Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA. Electronic address:

Published: May 2020

It is critical to develop a low-cost and environmentally friendly system to manufacture and recycle lithium-ion batteries (LIBs) as the demand on LIBs keeps increasing dramatically. Conventional LIB cathodes are manufactured using N-methyl-2-pyrrolidone as the solvent, which is expensive, highly toxic, flammable, and energy intensive to produce and recover. Ideally, a close-loop industrial supply chain should be built, in which the batteries are manufactured, market harvested, and recycled with minimal external toxic solvent through the whole system. This work demonstrates a green and more sustainable manufacturing method for LIBs where no hazardous organic solvent is used during electrode manufacturing and recycling. The electrodes fabricated via water-based processing demonstrate comparable rate performance and cycle life to the ones from conventional solvent-based processing. Utilization of a water-soluble binder enables recovering the cathode compound from spent electrodes using water, which is successfully regenerated to deliver comparable electrochemical performance to the pristine one.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205902PMC
http://dx.doi.org/10.1016/j.isci.2020.101081DOI Listing

Publication Analysis

Top Keywords

electrode manufacturing
8
green sustainable
8
sustainable manufacturing
8
water-based electrode
4
manufacturing
4
manufacturing direct
4
direct recycling
4
recycling lithium-ion
4
lithium-ion battery
4
battery electrodes-a
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!