To enhance the total antithrombogenicity of poly(ether ether ketone) (PEEK), we examined a combination of two methodologies for the suppression of activation in both the platelet and coagulation systems. A random copolymer (PMT) composed of a zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) unit and a cationic 2-methacryloyloxyethyl trimethylammonium chloride (TMAEMA) unit was grafted onto the PEEK surface by photoinduced self-initiated graft polymerization of the PEEK substrate (PMTx-g-PEEK). Then, negatively charged heparin was immobilized by ionic binding with TMAEMA units (Hep/PMTx-g-PEEK). The TMAEMA unit composition on grafted PMT altered the surface ζ-potentials of the PEEK substrates. Amounts of immobilized heparin depended on the ζ-potential. The concentration of heparin became constant on the sample surface where the TMAEMA unit composition was 30% or more, and was approximately 2.0 μg/cm. The Hep/PMTx-g-PEEK with a TMAEMA unit composition of 50% showed not only decreased platelet adhesion, but also a 4-fold extension of the blood coagulation time of the poly(MPC)-g-PEEK substrate. The poly(MPC) layer could inhibit platelet adhesion and activation, resulting in surface antithrombogenic properties. Additionally, heparin released from the Hep/PMTx-g-PEEK prevented activation of the coagulation system in whole blood. Therefore, the combination of these antithrombogenic methodologies was promising for prolonging the blood coagulation period of the materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2020.111021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!