Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics.

Semin Cancer Biol

Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India. Electronic address:

Published: January 2021

AI Article Synopsis

  • Human malignancies are a significant global health issue with rising incidence, posing challenges in drug discovery due to high costs and lengthy development times.
  • The review highlights the potential of repurposing existing non-cancer drugs—like antidiabetics and antibiotics—as effective, cost-efficient alternatives for cancer treatment.
  • Recent studies show that these repurposed drugs can inhibit various cancer-related molecular mechanisms, making them promising options for addressing the high demand for affordable cancer therapies.

Article Abstract

Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2020.04.006DOI Listing

Publication Analysis

Top Keywords

human malignancies
12
repurposing drugs
8
cancer patients
8
drugs
6
repurposing
4
drugs attractive
4
attractive pharmacological
4
pharmacological strategy
4
strategy cancer
4
cancer therapeutics
4

Similar Publications

Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.

View Article and Find Full Text PDF

Construction of reusable fluorescent assembled 3D-printed hydrogen-based models to simulate minimally invasive resection of complex liver cancer.

PLoS One

December 2024

Department of General Surgery, Cancer center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, China.

Complex liver cancer is often difficult to expose or dissect, and the surgery is often challenging. 3D-printed models may realistically present 3D anatomical structure, which has certain value in planning and training of liver surgery. However, the existing 3D-printed models are all monolithic models, which are difficult to reuse and limited in clinical application.

View Article and Find Full Text PDF

Introduction: Lung cancer, one of the leading causes of death due to neoplasms, requires prompt diagnosis and immediate treatment. The COVID-19 pandemic affected healthcare systems worldwide, having adverse effects on all aspects, particularly on the fate of patients with suspected neoplastic diseases. Limited access to healthcare, disruptions in regular operations (reassigning roles to some wards), postponed hospital admissions, prolonged diagnostic processes, and other factors have collectively led to the phenomenon known as COVID-19 debt.

View Article and Find Full Text PDF

Purpose: Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC.

View Article and Find Full Text PDF

Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!