A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-time monitoring of heat transfer between gold nanoparticles and tethered bilayer lipid membranes. | LitMetric

Real-time monitoring of heat transfer between gold nanoparticles and tethered bilayer lipid membranes.

Biochim Biophys Acta Biomembr

School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, New South Wales 2007, Australia; ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, NSW 2007, Australia. Electronic address:

Published: September 2020

Plasmon resonance frequency irradiated gold nanoparticles (GNPs) have gained interest as a laser-targeted treatment for infections, tumors and for the controlled release of drugs in situ. Questions still remain, however, as to the efficiency of heat delivery within biological tissues and how this can be reliably determined. Here, we demonstrate how a nanomaterial-electrode interface that mimics cell membranes can detect the localized heat transfer characteristics arising from plasmon resonance frequency-matched laser excitation of GNPs. We demonstrate that the lipid bilayer membrane can be affected by conjugated GNP induced hyperthermia when irradiated with a laser power output as low as 135 nW/μm. This is four orders of magnitude lower power than previously reported. By restricting the lateral movement of the lipids in the bilayer membrane, it was shown that the change in membrane conductance as a result of the heat transfer was due to the creation of transient lipidic toroidal pores within the membrane. We further demonstrate that the heat transfer from the GNPs alters diffusion rates of monomers of the gramicidin-A peptide within the lipid leaflets. This work highlights how targeted low laser power GNP hyperthermia treatments, in vivo, could play a dual role of interfering with both cell membrane morphology and dynamics, along with membrane protein function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2020.183334DOI Listing

Publication Analysis

Top Keywords

heat transfer
16
gold nanoparticles
8
plasmon resonance
8
bilayer membrane
8
laser power
8
membrane
6
heat
5
real-time monitoring
4
monitoring heat
4
transfer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!