A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ex vivo investigations on bioinspired electrospun membranes as potential biomaterials for bone regeneration. | LitMetric

Objectives: To assess the surface characteristics and composition that may enhance osteoblasts viability on novel electrospun composite membranes (organic polymer/silicon dioxide nanoparticles).

Methods: Membranes are composed by a novel polymer blend, the mixture of two hydrophilic copolymers 2-hydroxyethylmethacrylate-co-methylmethacrylate and 2-hydroxyethylacrylate-co-methylacrylate, and they are doped with silicon dioxide nanoparticles. Then the membranes were functionalized with zinc or doxycycline. The membranes were morphologically characterized by atomic force and scanning electron microscopy (FESEM), and mechanically probed using a nanoindenter. Biomimetic calcium phosphate precipitation on polymeric tissues was assessed. Cell viability tests were performed using human osteosarcoma cells. Cells morphology was also studied by FESEM. Data were analyzed by ANOVA, Student-Newman-Keuls and Student t tests (p < 0.05).

Results: Silica doping of membranes enhanced bioactivity and increased mechanical properties. Membranes morphology and mechanical properties were similar to those of trabecular bone. Zinc and doxycycline doping did not exert changes but it increased novel membranes bioactivity. Membranes were found to permit osteoblasts proliferation. Silica-doping favored cells proliferation and spreading. As soon as 24 h after the seeding, cells in silica-doped membranes were firmly attached to experimental tissues trough filopodia, connected to each other. The cells produced collagen and minerals onto the surfaces.

Conclusions: Silica nanoparticles enhanced surface properties and osteoblasts viability on electrospun membranes.

Clinical Significance: The ability of silica-doped matrices to promote precipitation of calcium phosphate, together with their mechanical properties, observed non-toxicity, stimulating effect on osteoblasts and its surface chemistry allowing covalent binding of proteins, offer a potential strategy for bone regeneration applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2020.103359DOI Listing

Publication Analysis

Top Keywords

membranes
5
vivo investigations
4
investigations bioinspired
4
bioinspired electrospun
4
electrospun membranes
4
membranes potential
4
potential biomaterials
4
biomaterials bone
4
bone regeneration
4
regeneration objectives
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!